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272 M.S. HOWE AND J. E.FFOWGCS WILLIAMS

This paper examines in detail a theoretical model describing the generation of sound by
an imperfectly expanded supersonic jet. Such a jet consists of a steady system of ‘ shock
cells’, and sound is produced by their interaction with turbulence convected in the
mixing region of the jet. The dominant convection velocity of the large-scale eddies is
shown to be a principal factor determining the total radiated sound power, essentially
independently of the details of the interaction mechanism. The ideal laminar jet
constitutes a wave guide in which are trapped the steady waves of a super-critical flow.
Imperfections of the wave guide cause it to leak. Turbulence provides those imperfec-
tions and thus acts as a catalyst enabling the energy of the nominally steady wave system
to leak out as sound. When appropriately viewed, the sound power is equal to the
power of the wave system in the steady jet. The computation of that power is conse-
quently insensitive to details of the jet turbulence. The spectrum of the sound is charac-
terized by a sequence of peaks produced by coherent scattering from the ends of success-
sive cells. In addition, the theory reveals the existence of a more broadband component
which is related to the effects of multiple scattering. The directivity of the radiated
sound predicted from the model exhibits encouraging agreement with experiment. The
total sound power associated with the presence of the system of shock cells is estimated
and shown to be between 0.2 and 1.2 %, of the jet exhaust power for a jet operating under
conditions appropriate to those of a supersonic transport at take-off. This is entirely
consistent with available experimental evidence.

1. INTRODUGTION

The mechanism of sound generation by a supersonic air jet differs considerably from the quadru-
pole sources of the classical theory of acrodynamic noise (Lighthill 1952) in which the turbulent
eddies are small on a wavelength scale. A principal component of the jet noise of a supersonic
transport such as Concorde is produced by the convection at supersonic velocities of large scale
turbulent eddies (Bishop, Ffowcs Williams & Smith 1971). These eddies arise from the instability
of the primary flow, and the sound they generate is in the form of ballistic shock waves which
dominates the field radiated at about 50° to the jet axis.

In practice the supersonic jet is distinguished from the subsonic in that there is usually a differ-
ence between the static pressure within the jet and that in the ambient atmosphere. The jet is then
said to be imperfectly expanded. The rapid variation in the pressure across the nozzle is accom-
plished by means of steady compression or expansion waves that trail downstream of the nozzle
lip; subsequent multiple internal reflections at the boundary of the jet produce a characteristic
system of ‘shock-cells’. The structure of these cells was first investigated by Emden (1899),
Prandtl (1904) and Rayleigh (1916), and more recently by Pack (1950) and Grabitz (1973).
Powell (1953) demonstrated that their presence is responsible for a source of noise usually
termed ‘screech’. This consists of a discrete spectrum of harmonically related tones, and is
generated by an acoustic feedback in which sound which is emitted from the ends of shock cells
through an interaction with a turbulent eddy propagates upstream in the ambient medium and
releases a new eddy at the nozzle exit. The feedback loop is easily broken, however, and, especially
in hot jets, screech is not usually significant.

When the system of shock cells is sufficiently extensive, the interaction of turbulence with the
accompanying periodic variations in the flow properties of the jet produces an additional broad-
band but strongly peaked spectral distribution of sound. This is known as ‘shock associated
noise’. It has been examined experimentally by Harper Bourne & Fisher (1973); they have also
posed an effective empirical modelling of the phenomenon. They show that over a wide range of
conditions the intensity of the radiation is a function of the pressure ratio of the jet alone, and in
particular does not appear to depend on the stagnation temperature or the jet efflux velocity.
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Harper Bourne & Fisher considered alarge number of experimental configurations and developed
a general noise prediction scheme by extending a model originally proposed by Powell (1953) for
the treatment of screech. The end of each shock cell was taken to be an omni-directional source of
acoustic waves triggered by the passage of a turbulent eddy, the relative phasing of the sources
being determined by the average convection velocity of the turbulence. The characteristic
peaks of the noise spectrum indicate that acoustic sources at successive shock cells are strongly
correlated and therefore that the lifetime of a typical eddy is sufficiently long for it to interact with
a substantial number of shock cells.

In this paper an analytical theory of shock associated noise is described in terms of an idealized
modelling of a turbulent, imperfectly expanded supersonic jet. The dominant turbulent inhomo-
geneities are modelled by a continuum of axisymmetric vortex rings of randomly variable strength
whose cores are located within a thin mixing layer. The lifetime of an eddy is taken to be great
enough that the eddy may be assumed to be ‘frozen’ as it convects along the jet, and the equa-
tions of aerodynamic sound are used to analyse the interactions of the vortex rings with the steady
wave system of the coherent cell structure. The procedure constitutes a generalization of Light-
hill’s (1953) application of his acoustic analogy theory of aerodynamic sound to the scattering of
a sound wave by turbulence.

Thus, since the turbulence is frozen, the model describes a situation in which energy is extracted
from the ordered non-uniform mean flow of the jet and reappears in the form of random, scattered
disturbances. The scattered field comprises two essentially distinct components. The first consists
of sound waves which escape directly into free space and give rise to the spectral peaks of the shock
associated noise observed by Harper Bourne & Fisher (1973). In addition, however, a random
distribution of eigenmodes of the jet is generated which propagate along the jet and whose ampli-
tudes decay exponentially with radial distance from the jet axis. These internally scattered dis-
turbances are distributed over a wide range of frequencies and, because they are confined to the
jet,necessarily experience incoherent multiple interactions with the turbulent field. The additional
sound waves produced through multiple scattering form a rather broadband component of
the free space radiation, a feature of shock associated noise which does not appear to have been
appreciated hitherto. This is apparently related to the so-called ‘parametric amplification’ of
jet noise observed in other contexts (Moore 1977).

The loss of energy from the mean flow through these interactions with the turbulent field
results in a gradual decay of the coherent shock cell structure with distance downstream of the
nozzle. A difficulty arises in attempting to describe this in terms of a transfer of energy from the
coherent waves to the random field, essentially because the steady system of shock and expansion
waves within the jet constitutes an integral part of the supersonic flow and is not therefore associa-
ted with a flux of energy other than that of the total flow. For the same reason, the energy flux
cannot be predicted by taking the difference between the mean fluxes along the jet at the nozzle
and far downstream where the shocks may be assumed to have disappeared, since these will be
identical unless specific account is taken of the manner in which energy is lost during interactions
with the turbulence.

Nevertheless, it is convenient to be able to assign a definite value to the energy flux into the
coherent wave system at the nozzle exit. This can be done by choosing a reference frame which is
in uniform motion parallel to the nozzle. If, further, the velocity of translation of the reference
frame is equal to that at which the dominant turbulent eddies are convected along the jet, it also
follows that the frozen turbulence becomes independent of the time. This in turn implies that,

20-2


http://rsta.royalsocietypublishing.org/

L\

A

<
-
3~
olm
~ =
k= Q)
O
= uwv

PHILOSOPHICAL
TRANSACTIONS

’\
A \
A

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

/=0

SOCIETY

OF

A

9

OF

Downloaded from rsta.royalsocietypublishing.org

274 M.S. HOWE AND J. E. FFOWCS WILLIAMS

with respect to this moving frame of reference, all of the energy which enters the coherent struc-
ture at the nozzle is converted into sound and trapped internal waves.

The physical situation in a real jet is different, of course. We have taken no account in the above
discussion of the gradual entrainment of ambient fluid by the jet. This causes a progressive
reduction in the centre-line jet velocity, which must ultimately become subsonic. When this
occurs the jet can no longer support stationary waves and the shock cells must have disappeared.
Detailed observations, however (see, for example, Trevett 1968), indicate that the fluctuations in
pressure and velocity associated with the cell structure are damped out by the diffusion across the
jet of the turbulent mixing region, i.e. through the interaction of the coherent wave system with
turbulent inhomogeneities, and that this occurs before the centre-line velocity has become sub-
sonic. Hence we shall assume in our modelling of the problem that the decay of the coherent
structure is due entirely to interactions with the turbulent field, the decay being the result of an
effective turbulent viscosity.

A purely analytical treatment of this physical problem is tractable only when certain simplifi-
cations are introduced into the equations of motion. Pack (1950) has compared experimental
data of underexpanded jets with predictions of the coherent jet structure based on a linearization of
the equations with respect to the degree of non-uniformity in the imperfectly expanded flow. He
concludes that in the vicinity of the jet boundary, linear theory provides an accurate description
of the flow even for moderate values of the ratio of the excess pressure of the jet at the nozzle exit
to the pressure in the ambient atmosphere. Since the interaction between the shock cells and the
turbulence occurs mainly in the mixing region of the jet, it may therefore be argued that a linear-
theory description of the structure of the shock cells would be expected to yield a valuable first
approximation to the scattering problem. (The excess pressure ratio occurring, for example, in
the Concorde supersonic transport is typically in the range 0.3-0.6.) In fact, we shall neglect all
terms which are nonlinear in the irregularities of the flow produced by imperfect expansion, but
retain the principal nonlinear components of the equations which account for the interaction
between the coherent wave system and the turbulence.

In doing this, a philosophical difficulty is encountered which is currently a subject of debate in
the literature. This concerns the basic instability of the jet, and in particular the réle played by
those instabilities which arise in an analysis based on a linearization of the wave propagation
operators. In a forthcoming paper, Dowling, Ffowcs Williams & Goldstein (19%8) advance con-
vincing theoretical arguments to the effect that these instabilities must be explicitly suppressed
when Lighthill’s acoustic analogy theory is used to investigate the sound generated by the jet.
Analytically this leads to a representation of the acoustic field which satisfies the Sommerfeld
radiation condition of outgoing waves at infinity, but not necessarily the causality condition, so
that an acoustic disturbance may anticipate the turbulent sources. Thisis because an aerodynamic
source can also initiate the development of new turbulent eddies, and the theory must allow for
the prior existence of sound waves associated with the growth of these eddies.

We shall apply this form of reasoning in the present discussion, and ignore possible contribu-
tions of unstable solutions to the acoustic analogy equations. Real instabilities are responsible for
the growth of the turbulent shear layer. Having recognized that this occursin the real jet, however,
the experimental observation (Harper Bourne & Fisher 1973) that a typical eddy interacts
coherently with several shock cells suggests that the essential dynamics of the scattering problem
are none the less contained within our model in which the dominant turbulent eddies are assumed
to be ‘frozen’.
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In §2 of this paper the model problem is defined and those results are obtained from the classical
theory of imperfectly expanded supersonic jet flow which will be required in subsequent sections
of the paper. The acoustic analogy equations describing the interaction between the turbulence
and the shock-cells are formulated in § 3. Their analysis in §§ 4, 5 leads to a description (§6) of the
coherent cell structure in the presence of the turbulent shear layer. The geometry of the model jet
complicates the details of the analysis and for this reason it is initially convenient to confine
attention to the idealized situation in which the shear layer is assumed to be infinitely thin. In §7
the analytical results for this case are interpreted, particular attention being given to the energy
balance between the coherent wave system and the randomly scattered disturbances. The spec-
tral properties of the shock-associated noise are deduced in §8. In §9 the theory is extended to
deal with the case of small but finite shear layer width.

The paper concludes (§10) with a numerical application of the theory to the shock associated
noise generated by the Rolls Royce-SNECMA Olympus 593 engine which powers the Concorde
supersonic transport. Predicted spectra and directivity of the radiated sound are compared with
available experimental data, and the modifications expected from subsonic forward flight of the
aircraft are described. Finally an estimate is made of the total radiated sound power arising from
the presence of shock cells in the jet.

The principal implications of the present theory are summarized in §11.

2. SURVEY OF THE CLASSICAL THEORY OF AN IMPERFECTLY EXPANDED
SUPERSONIC JET: DEFINITION OF THE MODEL PROBLEM

(a) Linear theory of the shock cell structure

A circular cylindrical jet of density p; and sound speed ¢; exhausts at velocity U from a semi-
infinite cylindrical nozzle of radius . The motion is axi-symmetric and is referred to a system of
cylindrical polar coordinates (%, 7, @) the x, -axis lying along the centre-line of the jet with U in
the positive x; direction. The nozzle extends between x; = — co and the origin (see figure 14). The
fluid in free space is at rest relative to the nozzle, with density and sound speed respectively equal
to Py, Co-

The jet velocity U is supersonic, i.e.

M;=Ufe, > 1.

Let there be an excess pressure P (positive or negative) in the jet at the nozzle exit with respect to
the pressure in the ambient atmosphere. This situation is characteristic of an imperfectly expan-
ded nozzle flow (see, for example, Liepmann & Roshko 1957, p. 127), and the rapid variation in
the mean pressure which must occur at the nozzle exit is accommodated by a system of steady
waves emanating from the nozzle lip. The cell-like structure of the jet arises from the subsequent
multiple internal reflections of this system at the boundaries of the jet.

In the classical theory (see Pack 1950) it is assumed that P is sufficiently small for the jet flow to
be described by the linearized equations of motion. For an ideal fluid, axisymmetric perturbations
in the pressure p within the jet satisfy the convected wave equation

1(0,,,0\2, & 10(0p
alat Ve 1ok =0 21)
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276 M.S. HOWE AND ]J.E. FFOWGS WILLIAMS

Let p denote the steady distribution of pressure within the flow. If pressure is reckoned relative
to that of the jet upstream of the nozzle, the steady-state solution of (2.1) must satisfy

F=0 (x1<0,0<7‘<a),} (2.2)

p=—P (%,>0,7r=a).

To solve (2.1) introduce the Fourier x;-transform p of the pressure by means of the definition:

b= p(r,k) = (1/2n) fio p(r, x;) e~ ke day,

o (2.8)
p) = [ po ke
Then in the case of time-independent flow, the transform of (2.1) becomes
10 ( O\ | ogras
767(757) +p1R*p =0, (2.4)
where B =A(Mi—-1) > 0. (2.5)

The solution of (2.4) which remains bounded at 7 = 0 has the form j = A(k) Jy(f, kr). Noting
that the Fourier transform of the boundary value (2.2) of the pressure is

) = —P/2xik, (2.6)
it follows that A(k)—-—;P— 2.7
it follows tha = Swikdy(F ) (2.7)

and hence that the pressure distribution within the jet is given by

s =P Jy(fykr)ethudk
P =50 ) F=i0) Ty ka—io)

(2.8)

In this formula o is a small positive quantity which is introduced to make the path of integration
pass below all of the singularities of the integrand which would otherwise lie on the real axis. Since
Jp(z) is an entire function, this choice of the integration contour ensures that p vanishes at all
points of the flow upstream of the characteristic surface, f,(r— a) 4+ x; = 0, which springs from the
lip of the nozzle. Downstream the pressure variations within the jet are determined by the poles
of the integrand. They give rise to a flow which varies quasi-periodically with distance ¥; and
characterize the shock-cells of an imperfectly expanded jet, though of course in this linear theory
model there are no real shocks. The form of these cells may be determined from the radial com-
ponent of the momentum equation. At 7 = a this becomes
0 0\2 19
('a—t'l' ng—l) N = —;1-5;?, (2.9)
where 7 is the radial displacement of the jet boundary from 7 = g, that of an ideally expanded
flow. In the present case (2.8), (2.9) imply that

—_ BP J‘“’ Jy (B ka) eike dk ‘
"= Saipy U2 o (fi0) 2 o (Brka—i0) (2:10)

I

U

The displacement 7 vanishes identically upstream of the nozzle (x; < 0) in accordance with the
condition of vanishing normal velocity on the nozzle. For x; > 0 the shape of the jet is determined
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by the poles of the integrand in (2.10). These arelocated atk = 0,and at f, ke = + A, (1 <n < o),
where A, is the nth positive zero of J;(z). Evaluating (2.10) by residues, we find that for x;, > 0,

___apiP [; © 1 (Anxl)]
=L 119 3 — cos . 2.11
e L e v @1
The zeros A, of Jy(z) are approximately equally spaced along the positive real axis only for
greater than about 2, and this results in the quasi-periodic cell structure illustrated in figure 15

for g, =1, P> 0, (cf. Howarth 1953, p. 319). Also shown are the multiply reflected leading
characteristics from the nozzle lip.

(a) Dy Lo1Co
ptP !’ PpC
0 X, "—l}*

circular cylindrical

nozzle

circular |

nozzle 4%

Ficure 1. (a) An idealized circular cylindrical jet of density p; and sound speed ¢, exhausts at a supersonic velocity
U into an ambient medium of density p, and sound speed ¢,. The ambient atmospheric pressure is equal to
pa, and P is the excess pressure in the jet at the nozzle exit plane. (b) Illustrating the boundary displacement of
the idealized jet for the case in which 8, = /(M7—1) = 1 (My = U/c,). The point A is the first minimum in
the displacement (see §10).

In the above discussion no account has been taken of real fluid properties such as heat conduc-
tion and viscosity. Nor have we considered the effect of the turbulent mixing layer which ulti-
mately transforms the simple, laminar regime described above into a fully developed turbulent
flow within about ten jet diameters downstream of the nozzle, at which stage the cell structure
has effectively disappeared. At the relatively high Reynolds numbers encountered in aeronauti-
cal applications, turbulent diffusion is probably the dominant mechanism responsible for the
degradation of the cell structure. We have argued in the introduction that this is likely to occur
before the centre-line jet velocity has become subsonic, and therefore that the decay is primarily
caused by an interaction with the turbulent fluctuations. In this paper we shall confine attention
to situations in which other irreversible phenomena may be ignored, at least in as much as their
effect on the regular structure of the jet is concerned.

If, further, it is permissible to continue with the linearized approximation, turbulent diffusion
will produce a decay in the amplitudes of the harmonic components in (2.11) of the regular or
coherent cell structure. The contribution from the summation in (2.11) would then tend to zero
as x; —> o0, and the asymptotic, fully expanded mean jet radius would be

- piP )
Qp = a(l -l—2/01 ) (2.12)
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278 M.S.HOWE AND J.E.FFOWCS WILLIAMS

The rate at which energy is extracted from each harmonic component through interactions
with the turbulence is proportional to the amplitude of that component. This implies an exponen-
tial decay with increasing x; and if the rate of decay is sufficiently small the effect of turbulent
diffusion may be incorporated into the integral representation (2.8), say, of the pressure distribu-

tion b iti
1on by writing _ _ppe (B kr) eleos dk
P =5 ) o) Sy ik —iA(R)’

(2.13)

where 4(k) > 0 and 4(k) € £, ka. Thus the poles of the integrand are displaced into the upper
half of the £-plane leading to an exponential decay of the quasi-periodic structure downstream of
the nozzle. The dissipation function A(k) is a function of the wavenumber £, and is determined by
the details of the turbulent fluctuations in the jet. It describes the effect of the continuous transfer
of energy from the coherent jet structure, in which waves propagating against the stream are
unable to move because of the exactly balancing headwind, into random disturbances which do
move, either as trapped waves within the jet or as sound waves which radiate to infinity in the
ambient medium. The coherent jet profile (2.11) now becomes

_ aﬁ%P 1 0 C“(dnwllﬁla) An Xy
- 1 U2[§~2n§1 /‘\% CO8 /))1“ > (2.14)

<3|

whered, = A(A,/fa).

The internally scattered disturbances will also decay as a result of irreversible processes. Ifit is
still permissible to ignore thermodynamic dissipation, the effect of multiple interactions with the
turbulent flow leads ultimately to the conversion of their energy into sound waves in free space. In
this limiting case, therefore, all of the perturbation energy associated with the coherent jet
structure (see below) eventually radiates away from the jet as sound.

(b) Theoretical modelling of a turbulent jet

In the subsequent sections of this paper we shall investigate the effect of turbulent diffusion on
the decay of the coherent structure in terms of an idealized model problem illustrated in figure 2.
In order to make the analysis tractable yet still retain the essential properties of a real jet, it will be
assumed that the dominant turbulent fluctuations are confined within a thin shear layer of width
0 between the jet flow and the ambient medium. The experimental observations of Davies,
Fisher & Barratt (1963) and others indicate that large-scale vortical disturbances within the
shear layer convect at a velocity V &~ 0.6U. Accordingly our model consists of an inner cylindrical
uniform core flow of velocity U and radius 4, surrounded by a coannular flow of velocity 7 and
width &, the interface with the ambient medium being at r = 4 = a+¢. The mean density and
sound speed will be assumed to be constant throughout the jet and shear layer and equal respec-
tively to py, ¢.

The turbulent fluctuations within the shear layer are modelled by an infinitely thin, axi-
symmetric distribution of vorticity e(r, %, £) confined to the surface 7 = & (@ < & < b). The vor-
ticity is assumed to be frozen and to convect at the shear flow velocity V, and is given by

o = E(x,— V) 8(r—h) I, (2.15)

where 1is a unit vector in the azimuthal direction and &(x) is the Dirac delta-function. The vortex
lines are thus circles perpendicular to the jet axis, and we shall suppose that the circulation density
£ is a stationary random function of'its argument with zero mean.
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It will be convenient to conduct the analysis in a reference frame in which the shear layer and
the vorticity distribution are at rest. Set
x=1x-Vi (2.16)

then (2.15) becomes o=£§x)0(r—h)1 (2.17)

and in figure 2 the velocity of the inner jet is U— V, and the ambient flow is at velocity V'in the
negative x direction.

ambient coherent
*—1 pressure wave,—P
i /

w

- O

- S
—~ Q —>

[ pe——— X 0’~———-— X =[]

Vit

B

T |

F1oure 2. Model of a supersonic turbulent jet. The flow in 7 < a4 is at a uniform supersonic velocity U. The turbu-
lent fluctuations are condensed into a continuum of idealized vortex rings of radius 4, given by (2.15) con-
vected at velocity V in a shear layer of width ¢ = b—a. The density and sound speed are assumed to be
uniform throughout the jet and shear layer, and the nozzle exit is simulated by means of a uniform ambient
pressure distribution — P applied at the surface of the jet for x; > 0.

The circulation density £(x) has the dimension of velocity, and we shall assume that the turbu-
lence Mach number,

6 = J(E/e <1, (2.18)

where angle brackets denote an average over an ensemble of realizations of the turbulent fluc-
tuations. The autocorrelation function, R(x), is defined by

R(x) = (&(2) &(z+4)) (2.19)

and its Fourier transform
O(k) = (1/2m) | R(x) e~*odx (2.20)

defines the spectrum @ (k) of the random function §. This is an even, non-negative function of the
wavenumber £ (see, for example, Stratonovich 1963, p. 27).

The linearized problem of the ideal imperfectly expanded jet of figure 1 was solved by specifying
the steady pressure distribution on the jet boundary, the condition of vanishing normal velocity
on the nozzle being satisfied identically. We shall adopt the same procedure in the present case,
and assume that, in the reference frame which is at rest relative to the shear flow, the coherent
pressure distribution on the outer boundary (r = &) of the jet is given by

p=—PH(x+V%). (2.21)

If the shear layer velocity Vis supersonic (¥ > ¢;) the normal velocity condition at the nozzle will
again be satisfied automatically.

21 Vol. 289. A.


http://rsta.royalsocietypublishing.org/

'y
N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

o \

.
|
L

/ \

r

A

SOCIETY

A

OF

A

OF

Downloaded from rsta.royalsocietypublishing.org

280 M.S.HOWE AND J. E.FFOWCS WILLIAMS

(¢) The coherent field power

In the limit as the shear layer width § = 4 —a-> 0 and when turbulent diffusion is neglected, we
have seen that the coherent field pressure variations within the jet are given by equation (2.8). In
the x-reference frame in which the shear layer is at rest, the ambient pressure perturbation (2.21)
propagates to the left in figure 2 and continuously extends the region of the jet flow which is
occupied by the coherent wave system. It may therefore be regarded as a source of internal wave
energy, the significance of which will emerge below (§7). Let Z denote the corresponding energy
flux into the jet.

Now the flux of energy per unit area in the direction of the unit vector n is equal to the mean
value of pBv-n (Landau & Lifshitz 1959, §6), where v is the fluid velocity and B is the stagnation
enthalpy defined by

B =w+4v? (2.22)
w being the specific enthalpy of the fluid. Hence if 7 denotes the radial component of the coherent
field velocity perturbation, and B is the corresponding perturbation in the stagnation enthalpy, it
follows that, since the mean value of p# must vanish identically

P = —27mp1foo (1B), _ ,dx. (2.23)

To evaluate this integral note that the flow within the jet is irrotational and isentropic in the
absence of dissipative processes, and may therefore be expressed in terms of a potential function
& such that the coherent field velocity o = (&, 7) = (0@ /dx, 0¢/0r). Variations in the fluid density
and pressure are related by the ‘adiabatic’ gas law and we may write

w = fdp/p ~ wy,+p/ps, (2.24)

where w; is the uniform specific enthalpy of the flow upstream of the nozzle exit. Using this
together with Bernoulli’s equation (Landau & Lifshitz 1959, §9)

¢/t +w+3[(U~V+u)2+92] = 34/0t+ B = const (2.25)
and also the integral representation (2.8), we deduce that in the linearized approximation

—PV [ elk@iVt)
T onip, UJ)_o E-ic

PP [ _S(pyka) eMetTD
2np, U ) _ o, (k—1i0) Jy(frka—i0)

b

(2.26)

U =

These expressions define real functions of x + V% so that on substitution into (2.23) we have

_ap PV ff —l«ﬁ(ﬂlkd ei(K"“)(“”)dekdx_l_ } (2.27)
4np1U2{f K—io) (k+i0) Jy(pyka+io) ’ ’

where ‘c.c.” denotes the complex conjugate of the preceding quantity. The integration with
respect to x yields 2nd(K — k), after which (2.27) reduces to

P =

iafpy P2V ' [ Ji(B1ka) _ ]
2p, U2 ) _ o | (B+ 0?) (B ka+i0) c.c.|dk (2.28)
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As o — 0 the term in square brackets tends to zero unless 3, ka coincides with a zero of Jy(z). To
take account of this case we note that for small o

Jy(py k) AV . ,
Tikatio) "% [Tolpika sio)[E oPrka—io) = J(Aikatio))
2icJy (B, ka)? § 2nid(frka—A,,) (2.29)

R Bk tio) R

as 0 — + 0, where for z > 0, A,, is the nth positive zero of Jy(z) introduced above, and forz < 0,
A, = —2A_,. Using (2.29) in (2.28) we finally obtain

222 P2V = 1

7 = P U2 n§1 ;\—?—1,

(2.30)
This infinite series representation of the energy flux into the jet determines the distribution of
energy amongst the harmonic components which comprise the coherent wave structure of
equation (2.11). The infinite series in (2.30) can be evaluated exactly (see Pack 1950), and the
sum is equal to %, so that finally

P = na?f3P2V/2p, U (2.31)

3. ANALYTICAL FORMULATION OF THE MODEL PROBLEM

In order to examine the interaction of the coherent jet structure with the turbulent shear layer
we first introduce a formal partition of the field variables characterized by

p(r, %,8) = p(r, %,8) +4'(r, %,1) (3.1)

In this equation, and in analogous expressions involving the other flow variables, the overbar
denotes the coherent or mean component of the field which we now define precisely as the average
with respect to an ensemble of realizations of the turbulent fluctuation £. Primed quantities
represent the random fluctuations about the mean state and arise as a result of the interaction of
the coherent jet structure and the turbulent shear layer. When the characteristic root mean square
turbulent Mach number ¢ = \/{§?)/¢, is small, the interaction may be treated as a scattering
problem. To do this it is convenient to adopt the stagnation enthalpy B of equation (2.22) as the
fundamental perturbation variable.

Consider first conditions within the shear lay r ¢ < r < b. Viscosity and heat conduction are
being neglected and the flow is therefore isentrupic. The inhomogeneous wave equation which
determines the stagnation enthalpy in terms of the other flow variables has the corresponding
form
D (1 D) 1 Do

. 1 Do
v DU ERY o - V2 = —— e
pi\ani) Etapy VB~ VB = div(erd) -5 (0 A2) (3.2)

2 D¢
(Howe 1975). Here D/Dt = 0/0t+v-V is the material derivative.

The right hand side of equation (3.2) contains two distinct contributions. The first is propor-
tional to the square of the small local perturbation velocity induced by the frozen, convected
vorticity distribution (2.17) and will be discarded. It describes the generation of sound by the
shear layer turbulence. The mean density is uniform within the shear layer and the vorticity of a
fluid element is conserved, therefore the second contribution to the right of (3.2) comes from the
21-2
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282 M.S. HOWE AND J. E.FFOWCS WILLIAMS

interaction of the vorticity  of (2.17) with the component of the perturbation velocity » produced
by the pressure distribution (2.21) imposed on the boundary r = & of the jet. This pressure distri-
bution will henceforth be referred to as the ‘incident wave’. For small turbulent fluctuation
velocities the leading interaction product is provided by the first term on the right of equation
(3.2).

Similarly, in the vicinity of the random vorticity layer, the final term on the left of (3.2) is the
only one capable of accounting for the singular variation in B across the layer. The second term is
O(e?) smaller, and the first is finite because of the material derivatives. Hence the variable coeffi-
cients of those terms may be discarded since they are negligible in other regions of the flow.

Taking account of all these remarks enables us to reduce equation (3.2) for the acoustic dis-
turbance within the shear layer to the form

2
(cl%a%-vz)B = div (@A), (3.3)
where on the right-hand side » now denotes the component of the perturbation velocity due to
the presence of the shock cells.

In this equation B and v may both be partitioned into coherent and random components as in
equation (3.1). When equation (3.3) is averaged over an ensemble of realizations of the random
vorticity field £ we than have

1% _v)B-d (o AD") (3.4)
2F = div{o Av"), .
since {w) = 0. This describes the evolution of the coherent field within the shear layer, the term
on the right hand side accounting for the effect of turbulent diffusion. Subtracting (3.4) from the

full equation (3.3) yields
(1 91_v2) B = divioAv— (oAD', (3.5)

PR

which expresses the random fluctuations in the stagnation enthalpy in terms of the interaction of
the shock-cell induced perturbation velocity with the turbulence.

In other regions of the flow the mean and random components of the wave field both satisfy the
homogeneous convected wave equation. Within the jet core (r < a) this is

1[0 0\ o ‘
{Z-%(a—ﬁ[U» V]a) _V}B_o, (3.6)

and in the ambient medium (r > 4) we have

1 /0 0\2
A2y 2Z) —vel g = .
{C% (E‘)t Vax) \% } B =0. (8.7)
In all cases the perturbed flow is axisymmetric, and
02 10/ 0
2 e — ——— — .
V2 = 2ty (rar) . (3.8)
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4. THE COHERENT FIELD EQUATIONS

The incident pressure wave (2.21) may be cast in the following integral form:

5= f f * Sk, ) elte-o0 dk do, (4.1)
h s—=F S(w+Vk (4.2)
where =gmpolet ). .

It follows that, since in the x-reference frame the random vorticity distribution @ does not depend
on the time, the analysis of the interaction between the incident wave and the turbulent
fluctuations may be simplified by first considering a single harmonic component proportional to
exp (—iwt), the complete result being obtained subsequently by integration with respect to the
radian frequency w. We shall suppress the explicit dependence on this time factor, and note that
in equations (3.4)—(3.7) 0/0t = —iw.

The discussion of these equations is further facilitated by Fourier transforming with respect to
¥, in accordance with the definition (2.3). In @ < r < b we then have:

(o8 ra--

ror\ or
(4.3a, )
L2, 2) yro) i = - 5,
rar\a) " T
where 1= I'(k)? = w?/cd — k2, (4.4)
and &, &, are the Fourier transforms of the ‘source’ terms defined by
1 [ .
[ 1 ’ —ikx
F 2nf-wdlv(wAv y e ke dy, ]
(4.5a, b)
Fy = 2_17tf divioAv—{wAv')}eFedx.
Similarly, equations (3.6), (3.7) become
10( 0 AT
(Fals) 13 s=o
Lo/ o (4.6a,0)
— — 2 =
(r ar(’ar) Y )B 0,
h I' = [wo—(U=TV)Ek]2/2— k2,
where f=lo— (U V)= (474, )
v2 = (w+ Vk)?/c3— k2

Consider the coherent component of the wavefield. This must be a function of (r, x + V¢) and
each harmonic component of'its Fourier transform will therefore be proportional to 8 (w + Vk), as
in (4.2). We may therefore assume at the outset that for the coherent field, w, £ satisfy

w+Vk=0. (4.8)

Also the coherent wave structure within the jet is at rest relative to the ambient medium, and in
consequence B must vanish in 7 > b. The perturbed flow in the ambient medium therefore
consists entirely of a random distribution of scattered disturbances.
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By using (4.8) and the definitions (4.4), (4.7a) of I" and Iy it follows that for the coherent
component of the wavefield we may take

I'=pok, Ty=pik (4.9)
fo = N(V2/c3~ 1) (4.10)

a quantity which is pure imaginary if V < ¢;.
Now the perturbed flow is axi-symmetric, so that taking account of the definition (2.17) of w it
is apparent that the transformed source term #; of (4.54) must have the form

where S, is defined in (2.5), and

F1 = Xu(k) 8(r— k) + xa(k) (h/r) &' (r— 1), (4.11)

where the prime denotes differentiation with respect to the argument. The mean interaction
Junctions X, X, are O(e%) quantities and their explicit forms will be obtained in §5.

Equations (4.34), (4.64) for the coherent field may now be solved formally by noting that the
homogeneous equations are satisfied by zero order Bessel functions. In particular,ine < r < bwe
may set .
B = [ HP By hr) + B, HP (o kr)] H(r—h),

+ [ HP (Bokr) +B_HP (B kr)] H(h—71), S (412)

where H{P, H are Hankel functions of the first and second kind respectively, and H(x) is the
Heaviside unit function. This form takes account of the singular behaviour of Batr=h resulting
from the inhomogeneous term & on the right of (4.34).

Within the inner jet flow (0 < 7 < @) the bounded solution of (4.64) is

B = 9,8y kr). (4.13)

The coefficients &7, %, and & are related by the boundary conditions which must be satisfied
at the mean positions 7 = g, r = b of the interfaces. These are (i) continuity of pressure; (ii) con-
tinuity of fluid particle displacement normal to the interface.

On either side of an interface, and in regions of the flow not occupied by the vorticity fluctua-
tions @, the Bernoulli equation (2.25) indicates that we may take

B = -3¢/t = ing, (4.14)

where ¢ is the velocity potential. It follows in the usual way that

ﬁ=p1‘g B (d<7’<b),} (4.15)

~n(U/V)B (0<r<a),

and therefore that continuity of pressure at r = a requires that
A H (Byka) +B_ HP (k) = (U/V) DIy, ka). (4.16)

Atr = b the pressure must equal that of the corresponding harmonic component of the incident
wave (2.21), i.e. by using the transform representation (4.2)

ot HP(Bykb) + B, HP (B kb) = S/p. (4.17)
Continuity of fluid particle displacement implies also that

(¢ /ar)/(w—vk)
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is continuous at the mean positions of the interfaces, where v is the local mean axial convection
velocity. This condition need only be applied at r = a since 0¢/0r vanishes identically in the
ambient medium. Ina <7 < b,v = 0, and in 0 < 7 < @, v = U— V hence making use of (4.8) we

have atr = a
(Bo/ VYA HP (B ka) +B_HP (Byka)} = (B1/U) DI, (f1 ka). (4.18)

It remains to write down the condition that the discontinuous expression (4.12) satisfies
equation (4.34). Substituting (4.12) into the left hand side of (4.34) we obtain
[(, — o) HP (B k) + (B, — B) HP By kh)] (/) 8'(r— 1)
—[( Ay — ) HP (Bykht) + (B, — ) HP (Bo kh)] fo kO (r—h) = — . (4.19)
Using (4.11) and equating coefficients of &(r — &), 8’(r — k) we find
(o~ ) Ol + B, ) HOLH) = 2] (4.20)
(o, — ) H{O(By kh) + (%, — B) HP (Bykh) = — X, '

Equations (4.16)—(4.20) are sufficient to determine 7, %,, & in terms of the Fourier coeffi-
cient .S of the incident pressure wave and the mean interaction functions y,, ¥s.
From (4.20), and making use of the Wronskian

HP(2) HP (2) —HM(2) HP(z) = —4i/nz (4.21)
(Abramowitz & Stegun 1965, p. 360), we may also write
Ay = oA+ {mifty Kh{x, H (Bo k) + (x1/ B2 k) HE (S /f/l)},}
By = B_— ki kh{yy HP (Bo kh) + (X1/ B2 k) HEO (B kh)}.
Using these results in (4.17) we obtain the following equation involving &7, %_ alone
A_H (B kb) + B HP (B kb) + 1By ks [HEP (B, kb) HP (By kh) — HE (B kb) HIP (8o k)]
by, [H (5, k) HP (y k) — HP (B, k5) HO (B k)] = S/ py. (4.23)

(4.22)

To proceed beyond this point requires a determination of the explicit forms of the mean inter-
action functions y;, y,. This is the subject of the next section.

5. THE RANDOM FIELD EQUATIONS

The mean interaction functions y;, x, of equation (4.11) depend on the random component
v’ of the acoustic velocity and on the vorticity @ through the definition (4.54) of #;. The velocity
v’ may be calculated once the corresponding component B’ of the stagnation enthalpy has been
determined.

Now B’ satisfies equation (4.35), where it appears both explicitly on the left-hand side and
implicitly in terms of »’ on the right by virtue of equation (4.55) for %,. By setting

v =047, (5.1)
equation (4.34) becomes:

19( 0 1 (= . —
(;a—r(ra—r)+]"2)§ =—%j—wdlv(wAv)e"k”dx.

1 ® M ’ ’ -
—E;tf“mdlv{w/\'v —{o Av")}e ke dy, (5.2)
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The first term on the right of (5.2) describes the interaction between the coherent velocity o
and the turbulent vorticity fluctuations o, and is the effective source of the random wavefield.
The second term on the right accounts for the subsequent multiple interactions of the random
field with the flow inhomogeneities; their effect is cumulative and must be taken into account
when it is desired to examine the propagation of the random field within the jet over many
characteristic wavelengths. However, our present concern is with the determination of the
Fourier transform %, of the divergence of the mean interaction product

(@A) = o) Av'(%,1)), (5.3)

and it is apparent that only those contributions to »’ which are correlated with the random vor-
ticity fluctuations at & will make a non-trivial contribution to this mean value. In other words,
only that part of the random acoustic field which has experienced an interaction with the turbu-
lent flow within distances of the order of the turbulence correlation scale /, say, of the point & will
be significant. For small values of the turbulent Mach number ¢ multiple scattering may be
neglected over distances of order /, and in this case the leading contribution to the right hand side
of (5.2) is furnished by the first term describing the coherent field interaction. The multiple
scattering term on the right of (5.2) results in a contribution to the mean value of equation (5.3)
which is at least O(¢) smaller.

Thus in estimating the mean interaction functions y,, ¥, defined by #; it is sufficient to adopt
the local Born approximation

10 0 ’ 1 ® ; . i
(76_7 (76;) +F2) B =— 2—T[J‘_w div (o A D) ek dx, (5.4)

provided that the fluctuation Mach number ¢ is small. This is equivalent to taking the following
approximation to the random equation (3.5):
(_1_@2 V2) B = div(0 A B 5.5
EhE =div (o A ). (5.5)
It is a familiar procedure in problems of wave propagation in random media, and further dis-
cussion of its justification may be found in Frisch (1968) and Howe (1971, 1973).

Equation (5.4) may now be solved in conjunction with equations (4.6) and the radiation
condition that in the ambient medium all random disturbances are generated within the jet
flow. In doing this we neglect the diffraction of the scattered field by the nozzle, an approxima-
tion which is not expected to affect the main conclusions of the analysis. The procedure is similar
to that already outlined in the previous section in connection with the coherent field, and only the
principal steps will be described here.

Let (#, ) denote the (x,7) coherent field components of  on thesurfacer = occupied by the
random vorticity fluctuations. Then

oAV = (—0,u)E(x)8(r—h), (5.6)
and (5.4) becomes:
100,0) ) B = L(° [ikox)s0— )= "ax)sr—n\ e(x)exxax, (5.7
ror\ or L rt r=h) e > (37)
where here and henceforth in dealing with the Fourier representation of the wavefield it is con-
venient to use capital K for the wavenumber of the random field and to reserve the lower case £ for
the coherent field.
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A particular integral B, of (5.7) may be set in the form
Bl = B\, H{®(I'r)H(r—h) + B H®(I'r) H(h—7) (5.8)

for a < r < b. The coefficients B/, are determined by substituting into (5.7) and equating the
coefficients of 8(r — k), 6’ (r— £). The complete representation of the random field is then obtained
by augmenting (5.8) with solutions of the homogeneous equations (5.6), (4.6) and applying the
conditions of continuity of pressure and fluid particle displacement at the mean positions r = a, &
of the interfaces.

In executing this procedure it is convenient to use the velocity potential ¢’ rather than B’. In
the ambient medium r > 4, the appropriate solution of (4.64) is then

¢ = THP (yr), (5.9)
where T is to be determined, and the radiation condition is satisfied by taking that branch of
v(K) which is defined for real values of the wavenumber K by
(0 +VK)*

&

sgn (w + VK) X %

y() = 5

(5.10)

according as (w+ VK)2/c3 2 K2 This condition is equivalent to assigning to the radian frequency
o a small positive imaginary component (Lighthill 1960). When y(K) is taken to be positive
imaginary for (w+ VK)?/c¢ < K? its value for all real K is automatically fixed since the branch
points of the square root are now displaced infinitesimally from the real axis.

Within the shear layer (¢ < 7 < 8):

" = (BO+C)HP(Ir) + AHP(Ir) (r > /z),}

= CH{"(I'r) + (B +A) HP(I'r)  (r < k), (5.11)

the coeflicients 4, C are to be found, and the B® correspond to the particular integral (5.7) of the
inhomogeneous equation (5.6) discussed above, and have the explicit representation

BY = (h/Sw)fw {Fa(X)H{ (I'h) —iKv (X) H$ (Th)} §(X) e XX d X, (5.12)
(¢ =1, 2), with I'= I' (K).
Within the inner jet flow (r < a) the ‘random’ potential is
¢" = DJy(I'y ), (5.13)
where I'; = I';(K).
Applying the conditions of continuity of pressure at the mean positions r = a, 4 of the inter-
faces, we have

(B(1)+A) H(()z)u“'a) +C[-]61)<[’a) — (_(O_T_%M) DJO(I'J a),

(5.14)
AH@ (I'b) + (B®+C) HP(I'b) = (‘itwﬂ()% THS (vb).
1
Similarly, continuity of fluid particle displacement gives
. r
W @ W) = —-2 )2
(BO 4 4) H®(I) + CHY (I'a) (w_ e K) DIy a), -

)

AHP (1Y) + (B2-+0) HP(TY) = (-5 ) % THD (7).

22 Vol. 289. A.
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To calculate the random perturbation velocity @” at points within the shear layer, the system
(5.14), (5.15) must be solved for the coeflicients 4, C. Introduce the following shorthand notation:

() A T
to=T\ao—(U-MEK) 7,(Tya) HO(Ta)

_ HP(I's) HP(Ia) (5.16)
= o A (Ta) " HP(Tay
Ry = (1= o) [ 144

. (o VHODD B
an "= gy T\o+ VK) HP(vb) HO(ThY
H@ (%) HP(Ib) (5.17)

61

= Y BO(T%) T HP(Th)
Ry = (1=vo) [v.

Then it is readily deduced that

A=R(BO+C); A+BY=2,C, (5.18)
&) 2)
and that A= %_’2(34'___921_3_),
%, — %,
(5.19)
_ BW42, B®
B '%1 - ‘@2 )

We are now ready to calculate the random velocity v’ at the turbulent vorticity layer. Take the
inverse Fourier transform of (5.11):

o = f * (BO+C) HO(I'Y) + AHP ()} K2 dK (k< 7 < b),

(5.20a, b)
¢’ =J {CH® (I'r) + (BY+4) HP (I'r)}elKedK  (a <7 < h).

These expressions indicate that ¢ and its derivatives are discontinuous at I" = /, which must
be the case in order to account for the inhomogeneous term on the right of equation (5.4). How-
ever, the resulting discontinuity in the flow velocity at 7 = % corresponds to the singularity which
arises at an isolated line vortex in the flow induced by that vortex. The self-induced velocities are
equal and opposite on either side of the vorticity layer, so that the actual value of " at 7 = £ is
given by the mean of the velocities predicted by (5.204), (5.204). Thus at the vorticity layer we
have:

o= éf " (BO+C) GK[HY (I'h) + %, HP (Th)], — T[HP (Th) + %, HP (Th)]) eX=d K
+éf°° CGK[H (k) +%, HP(ITR)], — T[HP (Th) + %, HY(I'h)]) &= dK, (5.21)

where use has been made of (5.18).


http://rsta.royalsocietypublishing.org/

'y
,/A\\
A\

.
|
L

AL A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

l am \

y \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SHOCK CELL NOISE 289

Hence referring to the definition (2.17) of the turbulent vorticity e, it follows that
1 (> . .
Fy = %f divio Av")y ez dx

= X1 00r—h) + (X2 2/7) 8'(r— 1)
~ o [[7 o vorgyprump am o mpamse—

+ KT}Z [HE(I'R) + A, HE (Th)] 6" (r — h)} emit-K)w 4K dx
+ 1—1“ f f _°° (CE()) {kF[H O(Th) + % HP (Th)] 8(r— k)

+ I—ié [HO(Th) + %, HP (Th)] 8" (r— /z)} etz dK dx, (5.22)
where I' = I'(K).
Clonsider the integration with respect to x in the second of the integral expressions on the right

of this result, namely, w
I= f (CE(x)) emie—Ex dx, (5.23)

From (5.12), (5.19) we can write

= é'w”(,%Thf@ U:o CE(%) E(X)Y{Ta(X) [HP (Th) + %, HP (Th)]

— K7 (X) [H{O(Th) + 2, HR (') |} exp (—i[ (k— K) x + KX]) dx dX. (5.24)

Using the definition (2.19) of the autocorrelation function R(x) of £(x), and setting z = x — X we
have

h @ " 1 2
1= gz | | R R O + a HP(0)

‘ —iKo (X)[H§(Th) + R HP (I'h) 1} exp (—i[(k— K) z+£X]) dzd X, (5.25)
ie.,
2
I= T (ke K) (16 (k) [H (I8) + % HP ()] — K3 (k) [H (1) + % HP (I)]}
3 (O, — )

(5.26)
where I' = I'(K), ®(k) is the turbulence spectrum given by (2.20), and (ii(k), 9(k)) is the Fourier
transform of the coherent velocity on » = 4.

Hence inserting (5.26) into the second integral on the right of (5.22) together with an analogous

result for the first integral, we finally deduce that

_inkk [* TO(k—K)

(k) =2 [ LUK orige) ) - 1K (R} 4K, (5.21)

and ) = g [ T (D) g0~ 5K SO}, (5.28)

where i) = [H(Th) + 8 B (Th)] [H® (%) + %, H (I)] (5.29)
(i=0,0)and,  g(K) = [H{(TW) +2, H (T [HP(Th) + % HP(T)]

[ (I8) + 2 H (Th)] [H (Ih) + 2, HE (T)]. (5.30)

These results determine the desired explicit forms for the mean interaction functions y;, X»
which occur in equation (4.23).
22-2
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6. THE DECAY OF THE COHERENT STRUCTURE OF THE JET

The results of §§4, 5 may now be used to calculate the coherent cell structure of the imperfectly
expanded jet in the presence of the turbulent shear layer (2.17). The expressions (5.27), (5.28)
for the mean interaction functions y, (£), x.(k) are substituted into equation (4.23). This is used
together with equations (4.16), (4.18) to determine the coefficients &7 , Z_ and @ of the coherent
field. In doing this it is also necessary to express (#(k), #(k)), the coherent field velocity at r = A,
and which occursin (5.27), (5.28), explicitly in terms of these coeflicients. Since y;, ¥, are already
quantities of O(e?) we may neglect the O(e?) discontinuity in the coherent field variables atr = %
in calculating (i(k), (k).

Thus the using relation b=- (i/w) B (6.1)

we may assume from (4.12) that
B =~ (o)A HP (o) + B HE (1)} (6.2)
in calculating (i(k), #(k)) for use in (5.27), (5.28). This gives:

U= (kjw){L_ HP (B, kh) +B_HP By kh)}, }

7= (ifykjw) (L HP (B kh) + B HE(Bykh)}. (6.3)

Tt is difficult to perform the analytical programme outlined above in its full generality because
of the complexity of the expressions involved. The difficulty arises because of the finite shear layer
width § = b — a, giving rise to Bessel functions whose arguments depend on ¢, b and % and leading
to complicated expressions which are not easily interpreted. We shall therefore assume that & is
small and specifically that for all coherent field wavenumbers £ of interest

kS < 1. (6.4)

This is equivalent to assuming that /a < 1.

The details of the analysis will be described in the limit as § - 0. The modifications required for
small but finite values of £ will be sketched-in subsequently in §9.

The limiting case in which 8 is allowed to vanish will still retain the essential physical qualities
of the turbulence interaction problem provided that at least one of the mean interaction functions
X1(k), xo(k) which account for the irreversible effects of turbulent diffusion continues to make a
finite contribution. In fact, as § - 0, the coefficient of , in (4.23) vanishes, but that of y, tends to a
finite limit, and (4.23) reduces to

A_HD (By ka) +B_HP (Byka) = xo = S/ps- (6.5)

The physical significance of this approximation will be discussed in §8.
By using equation (4.16) this result may be expressed in the alternative form

(U/V)DIo(Brka) = xz = S/pss (6.6)

2 being the Fourier coeflicient defining the coherent field within the inner jet flow (v < a). Here
Xz is an O(e?) quantity depending on the interaction between the random vorticity field @ and the
random wavefield »’. When y, is neglected, (6.6) determines the coefficient Z = 2 (k) explicitly
in terms of S, the Fourier transform of the incident pressure wave (2.21), and thereby leads
directly to the representation (2.8) say, of the coherent field in the absence of turbulent diffusion.
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Now in the limit as 6 - 0, equations (4.16), (4.18) imply that (6.3) assumes the simplified form
u(k) = (Uk/Vw) DJo(f1ka),

56) = (s VE/Uo) DI,y ba). ()
Also it follows from (5.28) that as § =0
00 = 3o [ o T -+) ) = KGR} A, (6.8)
I’y w 2Ji(I'ya)
where v awmm) Fre
(6.9)

Po')’( w )2H‘”(W>
pol' \w+VK) H{M(va)

and vy, I', I'; are functions of w and K.
Hence substituting from (6.7) into (6.8) and inserting the resulting expression for y, into
equation (6.6) we obtain

20 [Jpuka) |15 [ * EEE B op— Ky ax

— ek pi(g) 2" I i

This determines the Fourier coefficient 2 (k) defining the coherent field within the inner jet
flow (r < a). Both of the integrals in the curly brackets of this equation are O(¢2), and when ¢ is set
equal to zero (6.10) becomes

(6.10)

VS —VP 8(w+ Vk)

p1UJ(Brka) — 2mip, UkJy(fka)’

2(k) = (6.11)
The properties of the coherent field are determined by the poles of 2 (k) in the k-plane. When ¢
vanishes these lie on the real axis at £ = 0 and at the zeros of Jy(#; ka), as in §2. When ¢ s 0 the
effect of turbulent diffusion is to displace the poles other than that at £ = 0 from the real axis. To
determine their new locations observe that correct to O(e?) equation (6.10) becomes

D(k) =

(VS/p U)
[1 F [~ KT0+a) BV [» K®(k—K)

e W e R sk - Spuka) Bt [ Tv=7) 1]

(6.12)
Since ¢ is small the first factor in the denominator on the right may be replaced by unity. The poles
of 9 (k) are given by the zeros of the factor involving the Bessel functions, and for small values of ¢
these zeros are close to those of Jy(f ka). The real part of the integral in this factor gives the O (e?)

displacement of the root along the real axis, and will be ignored. Thus, defining the dissipation
Sfunction, Ay(k), by

_ PV (= K2®D(k—K)
Ay(k) = Im{- vt | To— dK}, (6.13)
we deduce that in the present approximation (6.12) is just
D) = (7S/p, U) (6.14)

{o(Brka) +14y(k) Ji(Brka)}
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292 M.S.HOWE AND J. E. FFOWCS WILLIAMS
But to O(e?) we may write
Jo(Byka) +14y(K) Jy(By ka) = Jo(Byka—id,(R)), (6.15)
Vs

in which case (6.14) becomes 2 (k) (6.16)

P UJy(Byka—idy(k))
Observe that for the coherent structure of the jet to decay with distance downstream of the nozzle,
the poles of Z (k) must actually be displaced into the upper half of the £-plane, i.e. we must have
Ay(k) > 0.
Using (4.2) we may also write
iy — VPé (w + Vk
0 = s TG R )

Substituting into equation (4.13), taking the inverse Fourier transform and performing the inte-

(6.17)

gration over all radian frequencies o, finally yields the following expression for the coherent field

VP [ (k) et

within the jet (r <a) B = S, U _m(k—icT)JO(ﬁlka—iAO(lc))dk'

(6.18)

The corresponding integral representation of the coherent pressure distribution within the jet
may also be written down, and takes the form (2.13) foreshadowed in our preliminary discussion
of the general problem.

7. PHYSICAL INTERPRETATION OF THE DISSIPATION FUNCTION Ay(k)

The theoretical model developed above to account for the decay of the coherent structure of the
imperfectly expanded jet is based on scattering theory in which the energy in the coherent wave
system is redistributed over a spectrum of scattered disturbances. The scattered field consists of a
continuum of sound waves which radiate away from the jet into the ambient medium, together
with a discrete spectrum of trapped waves propagating parallel to the jet axis and decaying
exponentially with radial distance in free space. Let us now derive an analytical representation
of this result in terms of the dissipation function 4,(£).

Note first of all that, from (6.9)

, _py{ o \*HP(ya) | w 2y (I'ya)
Iv=p) ‘“p;'(wwx) Ap(ya) 1 (5= 77E) To(Tya) (7-1)

This is a function of w, K and its zeros define the eigenmodes of a circular cylindrical jet of radius a
(see, for example, Morgan 1975). Those zeros which correspond to trapped modes within the jet
lie on the real K-axis when the radian frequency wis real, and the integral in (6.13) for the dissipa-
tion function 4,(k) is undefined until the manner in which the contour of integration negotiates
the singularities of the denominator is prescribed. It has been noted in §5, however, that the
radiation condition may be fulfilled by assigning to w a small positive imaginary component, i.e.
replacing w by w+io (o > 0), say. The effect is to shift the singularities from the real axis and
thereby remove the apparent indeterminateness in the value of the integral (6.13).

Since the turbulence spectrum @ (£ — K) is real when £, K are real it follows that (6.13) may be
expressed in the equivalent form

Ag(F) = —%@f:m@(k—m {ﬁVL_m—c.c.} dx. (7.2)
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Set QU K)=1/T'(v—pu)—c.c. (7.3)

This is pure imaginary. As o — + 0 two cases arise depending on the limiting value of I"(v — u).

Suppose first that I" (v — u) # 0as o— + 0. From (7.1) itis clear that because Iy is either real or
pure imaginary for real values of K, the second term on the right of (7.1) is always real (Abramo-
witz & Stegun 1965, p. 375). The first term, involving the Hankel functions, is real provided that
v = y(w, K) is pure imaginary (cf. equation (5.10)), and when thisisso @ (£, K) vanishesidentically.
For those values of K for which v is real, (7.3) becomes

LY
COR) = R EP G o 7R
x {y*H® (ya) *HO (va) — yH (va) H{O (ya) *}, (7.4)

where the asterisk denotes the complex conjugate of a function and for which w +io is replaced by
o —1io. Using standard results listed in Abramowitz & Stegun (1965, pp. 360, 361), we then find
thatas o— +0

_ _ 4isgn(y) (p1/p) ( © \*
O K) = TPl = PP ) P \o+ 7E) - (7.5)
for real y.

Next suppose that I'(v—u) = 0 as o — + 0. This occurs for real values of £, K when vy is pure
imaginary and both terms on the right of (7.1) are real. Let K = K,, define the location of a real

zero of
Fw,K)=T(v—u). (7.6)
For K ~ K,, we have
Flw+io, K) ~ (K—K,) (OF[0K),, +i0(0F/0w),, (7.7)

where the partial derivatives are evaluated at (w, K,,). Hence near K = K,
1 1
Qk, K) = Flo+io,K) Flo—io, K)

sis aF aF)
d oK

" (50, fo e TR

_ 2misgn (0F/0w), « pr
G (78]

as o — + 0. Taking account of all possible values of K, this result may be expressed in the more
compact form:
Q(k, K) = — 2nisgn (OF/0w) 6{F(w, K)}, (7.9)
where K is restricted to those real values for which F(w, K) = I'(v — ) is real.
Combining the results (7.5), (7.9) the representation (7.2) becomes

A =~ BT [0 RO (0
T T maUget] TP FIEP G o+ TR) T
2 Im (y)
+nglzzzk 7 n (0F /dw) K2 @ (k — K) 8{F(w, K)} dK, (7.10)

in which the notation Re (y), Im () indicates respectively that the integration is restricted to the
mutually exclusive regions in which y(K) is real and pure imaginary.
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Let us recall from equation (5.9) that y(K) is the radial wavenumber component of a random
disturbance in the ambient medium r > 5. When v is pure imaginary such disturbances decay
exponentially with radial distance r and do not therefore carry energy away from the jet. The
first term on the right of (7.10) for which v is real, thus accounts for the loss of energy from the
coherent jet structure by the radiation of sound waves in free space. The second integral in (7.10)
actually consists of a summation over the discrete set of real wavenumbers K which satisfy the
dispersion relation

Flw,K)=T(v—p) =0,
and defines the contribution to the decay of the coherent system arising from the generation of
trapped, random waves within the jet.

(a) Conservation of energy

The above interpretation will now be refined by means of an explicit demonstration of the
energy balance between the coherent and random wavefields. Consider Crocco’s form of the

inviscid momentum equation:
w/0t+VB =—-wAv+TVs. (7.11)

Here T'is the temperature, and s is the specific entropy of the fluid which is constant within the
shear layer, Vs = 0, where also o is given by equation (2.17). The energy equation for the random
disturbances within the shear layer (¢ < r < ) may be obtained by taking the ensemble average
of the scalar product of equation (7.11) with the random momentum fluctuation p, »’. This yields
without approximation

10(p0'?)/0t+{p,v"*VB") = — p;{(v'* 0 A D). (7.12)
Now correct to the second order in the perturbation quantities we have

p10"*VB' =div (p, 2’ B') — B’ div (p,v")
=div (p,v'B’) + (B'/c}) Op’ [0, (7.13)

where use has been made of the equation of continuity and of the adiabatic relation between
pressure and density. The perturbation stagnation enthalpy is related to the random pressure

fluctuation ' within the shear layer by
B =’ /p,. (7.14)

By using (7.13), (7.14) in equation (7.12) and integrating over the volume ¥ of the shear layer,
i.e. the region of the flow in @ < r < b, it follows that

5[ slme@n e m@desifiomomres——[ Gororsas ()
where the second integral on the left is taken over the interfaces r = a, b bounding #", n being the
unit outward normal from ¥".

The first term on the left of (7.15) denotes the rate of change of the mean energy of the random
field within the shear layer; in the steady state it must vanish identically. The surface integral is
equal to the net flux of random energy from the shear layer (Landau & Lifshitz 1959, §6). The
integral involving the triple scalar product accordingly represents the source of the energy of the
random field which is located on the surface r = £ ofthe turbulent vorticity layer. It arises from the
interaction between the coherent field v, the turbulent fluctuations @ and the random field o,
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and is equal to the power flux &, say, from the coherent jet structure into the random scattered
disturbances. Thus we may write

P = ——plf (' o AD)d
2
Eplf 5-(0 AD'y . (7.16)
e

This integral may be simplified by making use of equation (5.21) giving the value of v’ at the
vorticity layer. We shall consider the case as the shear layer width & = 5 — a— 0. The details of the
evaluation of the mean value (@ A ®") are entirely analogous to those outlined in §5 during the
determination of the mean interaction functions y,(k), x,(£). In the present approximation, in
which the right-hand side of (7.16) is to be evaluated correct to O(e?), the coherent velocity ©
may be taken to be that given by equation (6.7) and, on taking account of the expression (6.17)

leads to
_P (o i@ +7t)

1:31
~ 5| a7 o otk B (k) ) (7.17)

Observe that v occurs twice in the integrand of (7.16), once as indicated explicitly, and also in
the representation (5.21) of ' where B®, C are defined in terms of » by means of the relations
(5.19), (5.12).

The steps in the simplification of the power flux integral (7.16) are tedious but straightforward,

Qy

and present no difficulties not already encountered in §§5, 6. Performing the reduction we find
that as § > 0, Z may be expressed in terms of the double wavenumber integral

_ iaP? @k K) \
i | W v o e o AR CLOK

BRI 0 k) dika) S yke) + L S ke aR dbrec. (119)

where w = — VE.

But 4,(k) ~ O(e?) so that the integrand in this result is O(e?) except in the vicinity of the zeros
of Jy(p, ka) where it ~ O(1/e?). Hence, since ¢is small the principal contribution to Zis provided
by those values of £ where Ji(f, ka) is small, and in this case only the final term in the curly brackets
of the integrand is significant. Thus in the leading approximation

P = —

iaPzﬂﬁV‘*J‘ o K2(D(/c—K)Jl(ﬁ1ka)2{ 1
20, UL ) ) o 0Ty (B ka+idy R\ T =) ~

Comparing this with the integral (7.2) for the dissipation function 4,(k) we also have

c.c.} dK dk. (7.19)

o _ WP Vf Ay (k) Jl(ﬂlka)zdk
P =07 ) BB ka AR (7.20)
where use has been made of the coherent field relation w = — Vk.

Consider first the situation in which the turbulence Mach number ¢ —+ 0. This also implies that
Ay (k) = 0. The physical constraint of irreversibility (second law of thermodynamics) requires the
dissipation function 4,(£) to be non-negative. Hence as ¢ - + 0 we may use the limiting identity
of equation (2.29) to express (7.20) in the form

2na®fiP2V & 1 ma’BiPV

7= T BT e, O (7.2)

23 Vol. 289. A.
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A, (n > 1) being the nth positive zero of Jy(z). This expression for the power flux into the random
field is identical to that given in (2.30) for the flux of energy into the coherent jet structure from
the incident pressure wave (2.21). In other words, as the turbulence Mach number ¢ 0 the total
scattered energy is precisely equal to the flux of energy into the coherent wave system which
decays downstream of the nozzle.

For small but finite values of ¢ the ¢ function identity used in reducing (7.20) to (7.21) cannot
strictly be applied. This is because the spectral peaks of the coherent field have been broadened
by radiation damping. The peaks are located at f, £, a = A,, and the corresponding width of the
spectral line is proportional to 4,(%,,). The input of energy to the coherent field from the incident
wave (2.21) must now be determined from the expressions which define the mean jet structure in
the presence of scattering, i.e. by making use of equation (6.18) of the previous section. It is then
a simple matter to deduce from the energy flux integral of (2.23) that the integral expression
(7.20) also defines the flux of energy into the coherent waves from the incident wave (2.21).

However, it is clear that even when the root mean square turbulence Mach number ¢ is finite
the principal contributions to the integral (7.20) come from the regions £ ~ £, and therefore that
its value will not deviate substantially from (7.21). In other words the precise rate of decay of the
cell structure does not significantly affect the level of the total scattered sound power.

8. THE RADIATION OF SOUND INTO FREE SPAGE

We now apply the results of the previous sections to determine the sound radiated into free
space. In this respect we are principally interested in the properties of the acoustic field which is
the direct scattering product of the turbulent shear layer and the coherent shock-cell structure of
the jet.

The internally scattered random wave modes subsequently experience multiple scattering and
thereby provide an additional source of free space acoustic radiation. The sound generated in this
way is significant, and must actually be comparable with that scattered directly from the coherent
wave system. However, the effect of multiple interactions is to spread the random internal wave
energy over a wide range of frequencies, and consequently the spectrum of the accompanying
free space sound field will be ‘broad-band’. On the contrary the spectrum of shock associated
noise exhibits a sequence of peaks which in terms of the present theory must be associated with the
coherent scattering of sound by the array of shock cells. It is this aspect of the radiated sound that
is investigated in this section.

This component of the free space radiation may in principle be determined from the inverse
Fourier transform of equation (5.9), namely,

¢ = f f ° T(w, K) HP (yr) a0 4K do, (8.1)

where the coefficient T'(w, K) is determined by the system of equations (5.14), (5.15). In practice
only the mean square properties of the radiation are required, and we may avoid the analytical
complications associated with the complete representation (8.1) of the sound field by making use
of the power flux integral (7.20) of the previous section.

That integral gives the contribution to the total scattered sound from each wavenumber
component £ of the coherent wavefield (6.18). The spectral distribution of the random fluctua-
tions generated by each of these components is furnished by the dissipation function 4,(k) occur-
ring in the numerator of the integrand of (7.20). Indeed, 4,(%) has been shown to possess the
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integral representation (7.10). The first integral on the right of (7.10) is over those values of the
wavenumber K of the scattered field which propagate as sound in free space; the second integral
corresponds to the internally scattered waves.
Introduce the definition
_ K2(p1/py) ® \*

2k X0 = i o 7E) > (52
Then if #, denotes the power flux into the free space acoustic modes, it follows from (7.20),
(7.10) that

Z(k, K) dK dk. (8.3)

_2ppive f Resgn () Dk — K) Jy(fyka)?
)y =

np, U 3| Jy(fy ka +iAo(k)|2

Next observe that for each of the scattered sound waves in free space (K, y(K)) represents the
(x,7) component of the acoustic wavenumber vector, where since 7 is real, we have from (5.10)

y(K) = sgn (0 + VK) |(w+ VK)?/c3 — K2[* (8.4)

In this expression w = — Vk is the radian frequency of the scattered wave in the x-reference
frame which is at rest relative to the turbulent shear layer. In a system of coordinates which is
stationary with respect to free space, the shear layer translates in the positive x-direction at velocity
V. Consequently the radian frequency £, say, of the sound wave relative to the ambient medium is

given by the Doppler formula
Q=w+VK, (8.5)

from which we have k=—(1/V)(Q2-VK). (8.6)

Making this substitution in (8.3) we obtain

_ 2 fﬂew sgn () P(E—K) J,(8, Fa)?* Zy(F, K) dK d2 (.7

AT T O R (By ka 14, (B)) 2 ’

where £ is defined by the right-hand side of (8.6).

Equation (8.7) represents the scattered power as an integral over the ¥ component of the acous-
tic wavenumber vector and the frequency £ relative to an observer fixed in free space. Accor-
dingly, if @ denotes the direction of propagationin free space, i.e. 0 is the polarangleof the normal
to the wavefront measured from the positive x-axis, we have from (8.4)

K = (2/c,) cos 6,}

= (R/¢,) sin 0, (8:8)

where 0 < 6 < n, which includes all possible values of K for which y(K) is real. Using this in the
integral (8.7) gives

4P2B3 VS B(QJV) J,(p, Fa)? o
P, = nplm%f fml o A e 2 (/5 cose)smede (8.9)

where now £ = — (2/V) (1 — My cos 0), M, = V/c,is the shear layer Mach number relative to the
sound speed ¢, in free space, and it has been noted that the integrand is an even function of Q.

The acoustic power flux £, is given in (8.9) as an integral with respect to the frequency £ and
all possible radiation directions 6. The integrand is positive definite provided that the shear layer
is subsonic (M, < 1). In the supersonic case the integrand becomes negative for

0 < arccos{1/M,},

23-2
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298 M.S. HOWE AND J. E. FFOWCS WILLIAMS

which is the Mach angle for a source translating at velocity ¥ in the positive x-direction. This
angle lies within the classical free space zone of silence 0 < ¢ < 0, for acoustic sources located
within the jet, where 6 = arccos {¢,/ (¢, + U)} (see, for example, Morse & Ingard 1968, §11.1).

Ve 4z \QE'
s
Ve

F1cure 3. Section through the jet and the elementary control surface dZ'(6) which is fixed relative to the ambient
medium. d2’ denotes the position of the surface element at the time of emission of sound by a source located
at rest relative to shear layer The ‘ray path’ is the path of propagation relative to a reference frame fixed
with respect to the shear layer.

In order to see the physical significance of the negative power flux consider a packet of scattered
waves which propagates relative to the ambient medium within an interval d6 of the direction 0
(figure 3). Let these waves pass through an elementary control surface d2'(6) which is fixed rela-
tive to the ambient medium and occupies the sector (0, df) of the surface of a large sphere of
radius R centred on the axis of the jet, i.e. such that

d2 = 2rR2sin 0d6.

Then the radius R through d X' lies in the direction of the wavenormal of the incident sound waves.
Thesc waves actually arrive at dX' after propagating along the ray path illustrated in figure 3
which takes account of the mean flow of the ambient medium at velocity ¥ in the negative -
direction. It follows that for an observer at rest relative to the ambient flow and who is instan-
taneously located at dX at the time of arrival of the sound waves, (R, 0) represent his polar posi-
tion relative to the source of sound at the time of emission of the radiation. In otherwords, since the
nozzle is fixed in free space, (R, 0) specify the fixed observer location relative to the nozzle.

The ensemble average of the flux of energy through d2'may be deduced direcily from (8.9) by
noting that it corresponds to the interval (6, df) of the O-integration:

_2P2BIVRAT [ B(Q/V) (B Fa)? Zy(F, Q cos 0/c,) A
T wR, U, Jo 22(1— Mycos 0)3| (B, ka+idy (k)2 "

42, (6) (8.10)

We can also express d2, () in terms of the mean square pressure perturbation {p2) = % The
flux of energy through d due to the radiation in (6, df) is made up of two components:

dZ, = rate at which work is done on d2 by the fluctuating pressure p + the rate at which acoustic
energy is convected through dX by the mean flow at velocity ¥ in the negative x-
direction. (8.11)

The first term on the right hand side is equal to

(F/Po Co) A2
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Also the acoustic energy density is %/p,c2, and the rate at which acoustic energy is convected

through d2'is therefore equal to
(#*/poct) (= Vcos0) dZ.

H2
Thus (8.11) becomes 42, (0) = /71’7 (1= M, cos0) d2. (8.12)
0o
It is clear that this can be negative when M, > 1 and for 0 < arccos{1/M,}, and this case arises
when the convection term of (8.11) exceeds the rate of working by the pressure fluctuations.
Next we may equate the results (8.10), (8.12) to obtain the following spectral representation of
the mean square pressure fluctuation

— _2P2R3p V3 [ D(Q/V) Iy (B, ka)? Zy(k, 2 cos 8 /c,) dQ
P =R, U7 )y "02(1= Mycos 0) [ Jy(Brka-+1do( R

(8.13)

Note that the integrand is positive definite. Equation (8.13) constitutes the frequency distribu-
tion of the sound pressure level for an observer located at rest in the distant field at the polar
position (R, 0) relative to the nozzle of the jet. The spectrum is characterized by a sequence of
sharp peaks ~ O(1/¢%) which occur at those values of £ at which Jy(4, ka) = 0, i.e. for

A,V

“= pia|l—MycosO|

Note that the principal contribution to the acoustic spectrum is associated with the low wave-
number components A, of the Fourier series representation (2.14) of the shock-cell system. This
may be contrasted with Lighthill’s (1953) result that the spectrum of the direct scattered sound
produced by the interaction of turbulence with a weak shock wave is dominated by the high
wavenumber components of the incident wave. The difference arises because in the shock noise
problem the largest component of the radiation field is provided by scattering events which are
correlated over large distances, namely of the order of the characteristic wavelength of the shock
cells.

Let us now examine the physical significance of the limiting approximation ¢ = b —a -0 of
vanishing shear layer width which has been applied here and in §§ 6, 7. First note from (8.2) that

since
K= (2/¢c,)cos0 (00

N

),

the function Zy(%, £2/¢, cos 0) which appears in the spectral representation (8.13) vanishes in the
radiation direction ¢ = 90°. The reason for this may be understood by noting that the coherent
field velocity perturbation » = (#,7) at the turbulent vorticity layer is given in the limit as
& — 0 by equation (6.7). Referring to the integral form (6.18) of the coherent field we see that it is
determined principally by those wavenumbers k located near the zeros of Jy(, ka), and this in
turn implies thatat7 = a the axial component # of the coherent velocity is small;in fact@ ~ O(e?) v
Hence the only significant contribution to the source term on the right hand side of the local Born
approximation (5.5) for the random scattered field is

div(wAD) = —8(r—a) 0[&(x) v(x, )] /Ox. (8.15)

Accordingly the source consists of a random distribution of acoustic ‘dipoles’ orientated parallel
to the jet axis and for which ¢ = 90° is a null radiation direction.
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The radiation at right angles to the jet axis is associated with radially orientated dipoles of the

form div (0 AD) = (h/r) %E(x) @(x, £) &(r— h)}or. (8.16)

These can arise in the theoretical modelling of shock associated noise considered in this paper only
when accountis taken of the finite width & = 4 — a of the turbulent shear layer. The corresponding
modifications to the results obtained above will now be discussed.

9. THE EFFECT OF FINITE SHEAR LAYER WIDTH

We shall assume that £d is small and obtain only the first order corrections to previous results in
which & was taken to be zero. The analysis is simplified by taking the limit £ a, in which the
random turbulent vorticity layer ultimately coincides with the inner interface r = a. Observe
that it would be inappropriate to let z— & since this would imply that # is negligible at the turbu-
lent shear layer and would again give no radiation at right angles to the jet axis.

Consider first the coherent field interaction equation (4.23). For small values of 46 the first two
terms on the left-hand side become in the leading approximation

A_HP (fy ka) + B_HP By ka) -  kd(s/_ H (By ka) + B HP (B, ka)}
= (U/V)D{Jy(Prka) = BL(V/ U kS (Brka)},  (9.1)
where use has been made of equations (4.16), (4.18). The expression on the right of (9.1) is
approximately equal to (U/V) @Jy(B, kla +8(V/UR),
and it follows that when scattering by the turbulent shear layer is ignored (i.e. when y, (), x,(k)
are set equal to zero in (4.23)), the Fourier coefficient & (k) of the coherent field within the jet
flow (r < a) is given by Vs
90 = —rer ey
p1 UJy (B ka) (9.2)
a=a+d6(V/U)
This provides the first order correction to the analogous result (6.11) which obtains when & = 0.
When the remaining contributions to equation (4.23) are approximated for small, but finite

k8, the principal non-trivial modifications of the earlier results are found to be as follows.
(i) The dissipation function 4,(£) of equation (6.13) becomes

A, (k) = Im{-%fw ®(k—K) [I’(f—m +(1/r£¢kf)12/n)] dK}. (9.3)

(ii) In equations (6.17), (6.18) for the coherent structure within the jet flow, and in the inte-
grand of the power flux integral (7.20), ais replaced by a, and 4,(k) is replaced by 4, (k).

(iii) Equations (8.3), (8.10), (8.13) which define the free space acoustic power £, and the
spectral composition of the radiation field, are modified by replacing a by a, 4,(k) by 4,(k),
and the function Zy(k, K) defined in (8.2) is replaced by Z,(k, K), where

(88)* (po/py) 0+ VK2
2405 K) = 2l K) + s e ). (9:4)

In particular note that for K = (£/¢,) cos 0, the second term on the right of (9.4) is non-zero at
6 = 90°. Hence the modified form of the spectral representation (8.13) of the acoustic field
possesses a finite contribution in this radiation direction.
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10. PRACTICAL IMPLICATIONS OF THE ANALYSIS: SHOCK ASSOCIATED NOISE
OF A SUPERSONIC TRANSPORT

In this section the results of the theoretical investigation described above are considered in
relation to the jet noise of a supersonic transport such as Concorde. Naturally it is not possible to
make a precise identification of the parameters of the model problem with those describing the
gross features of a real jet, but the error involved here is very much less than that already intro-
duced into the analysis by the idealized representation of the turbulent shear layer. We shall
examine in particular the following aspects of the free space radiation:

(i) the spectrum of the direct scattered sound;

(ii) the directivity or field shape of the direct scattered sound and its dependence on the
forward flight velocity of the aircraft;

(iii) the total acoustic power associated with the presence of shock cells.

Recall that ‘direct scattered sound’ refers to that component of the radiation field generated
by the direct interaction of the turbulence and the shock cells (see §8), and which is usually
referred to as the shock associated noise (Harper, Bourne & Fisher 1973).

(@) The turbulence spectrum and the dissipation function A,(k)

We must first specify a functional form for the turbulence spectrum @(k) defined by equation
(2.20). The model shear layer consists of a mean flow at velocity 7 in which is convected a frozen
field of axi-symmetric vorticity @ given by (2.17). The mean vorticity of the shear layer is equal
to U/8, where 8 is the width of the layer. The random function £(x) describes the local fluctuation
about this mean value and the total circulation associated with @ must vanish:

| fj’ £(x)dx = 0, (10.1)

From (2.19), (2.20) this condition implies that @ (k) — 0 as £ — 0 and we shall introduce the follow-
ing simple analytical representation of the spectrum which is consistent with this constraint:
2 2 2
D(k) =_<_%Zl(_§_i) exp{-—(—2k—f-t) } (10.2)
This attains its maximum value at £ = 2n//, corresponding to dominant vortical disturbances of
wavelength /.

Next it is necessary to determine the explicit form of the dissipation function 4,(k) which
appears in the spectral representation of the direct scattered sound in the manner discussed in
§§8, 9. Thisis given by equation (9.3). That result may be expressed in terms of separate contribu-
tions from the direct scattered sound and the internally scattered wave modes as in the case of the
analogous decomposition (7.10) of 4,(k).

Consider for definiteness the representation (7.10). For a fixed value of the wave number £ both
integrals may be calculated numerically. The first, giving the contribution to 4,(k) from the
direct scattered sound, poses no serious problem in this respect. The second integral may be
evaluated formally because of the presence of the ¢ function in the integrand, the contributions
arising from the real zeros of the dispersion function F(w, K). Recalling that w = — V&, it follows
that these zeros occur in the range of K satisfying (for £ > 0).

K> Myk)(My+1) or K < Myk/(My—1) (10.3)
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for which y(K) is pure imaginary. The numerical problem in this case thus reduces to the deter-
mination of these zeros. Procedures for doing this have been considered in a similar context by
Morgan (1975) and Munt (197%) and involve a considerable amount of numerical computation.
In view of the idealized nature of the model problem a thorough numerical investigation can
hardly be justified in the present case since the gain in the precision of the final result is unlikely
to compensate for the deficiencies in the theoretical modelling of the turbulent shear layer.

In order to avoid these difficulties note first of all that the point X = £ is always included in the
range (10.3) for which y(K) is pure imaginary. This indicates that, if the spectrum function
@ (k— K) decays rapidly as | K — k| increases, the principal contributions to the dissipation function
Ay(k) would be furnished by the second of the integralsin (7.10), i.e. the generation of internally
scattered waves would be primarily responsible for the decay of the shock cells. For this to be the
case it is necessary for £//2x to be large, where /is the dominant wavelength of the turbulent field
introduced above. But the integrand of (8.13) shows that the precise value of 4,(k) is significant
only when f,; ka lies in the neighbourhood of a zero A, say, of J,(z). The relevant condition is
therefore

(A,/2By) (Lfa) 2 1. (10.4)

The turbulent scale [ is of the same order as the nozzle diameter 24, and in the applications to
be considered below £, will not exceed unity. It follows that (10.4) should be valid for those A,, for
which z > 1.

Thus the dissipation function 4,(%) is essentially determined by the second integral of (7.10),
which in turn reduces to a summation over terms corresponding to the real zeros of F(w, K) where
w = — Vk. The rapid decay of @(k — K) means that only those zeros close to K = £ need be taken
into account. Let N(k) denote the number of zeros involved here, for which @(k— K) ~ (£2)I. A
consideration of the dimensions of the quantities appearing in the second integrand of (7.10)
then leads to the following parametric dependence of the dissipation function:

Ao(k) oc 2lkN (), (10.5)

e being the turbulence Mach number. A similar argument applied in the case of small, but finite
shear layer width ¢ implies an analogous parametric form for the corresponding dissipation func-
tion 4,(k).

The number of zeros N (k) increases approximately linearly with wavenumber £, corresponding
to the increasing frequency of oscillation of the Bessel functions J,(I'y a), J;(I"y a) which occur in
the definition (7.1) of the dispersion function F(w, K) = I'(v — u) (cf. Morgan 1975). Noting also
that the growth of the turbulent eddies will be dependent on the length scale of the mean flow
through which they translate, so that / may be expected to be proportional to the scale £, a of the
shock cells, we therefore obtain the following approximate representation of the dissipation function

Ay (k) = a(fy ka)?, (10.6)
where « is constant.

An estimate for the value of the coefficient @ may be derived by making use of the description
(2.14) of the boundary of an imperfectly expanded jet. Pack (1950) has shown by numerical
computation that the first minimum in the boundary displacement (i.e. the point marked A in
figure 1) occurs at a distance of approximately

L=24Ba (10.7)
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from the nozzle. This will be assumed to characterize the length of a typical shock cell. According
to Trevett (1968) the number of well formed cells is typically of order 8. By using this figure & may
be estimated by assuming that the exponential decay of the principal Fourier coefficient (n = 1)
of (2.14) has reduced in value by a factor of 0.5 over half the total length of the array of cells, i.e.
for x; = 4L. This implies that d; = 0.072. Hence noting that d; = 4,(A,/f, a) where A; = 2.4048
is the first zero of Jy(z), it follows from (10.6) that

a = 0.0125 (10.8)

Let us note here, with reference to the results of (ii) in §104 concerning the intensity of the
direct scattered sound, that increasing/decreasing the effective length of the system of shock-
cells by 509, from the above figure only results in an increase/decrease of about 2 dB and 3 dB
respectively in the direct scattered sound pressure level.

(b) Underexpanded jet flow characteristics of a supersonic transport

The jet of a supersonic transport such as Concorde consists of an underexpanded supercritical
flow exhausting from an approximately conical nozzle. The throat of the flow therefore occurs at
the nozzle exit and the flow there is sonic. As discussed in detail by Pack (1950), the jet velocity
which determines the mean Mach number M of the free jet-flow is correctly approximated by the
fully-expanded jet velocity which in the model analysis occurs at the boundary of the jet where the
pressure is equal to the atmospheric pressure p,, say.

Table 1 lists the principal characteristics of a supersonic jet such as that of the Rolls Royce~
SNECMA Olympus 593 engine which powers the Concorde. The entries are taken from Jacques
(1977), and correspond to conditions appropriate to three modes of engine operation. At take-off
the engine can be operated with or without ‘re-heat’. In the re-heat mode additional fuel is
injected upstream of the nozzle exit to provide increased thrust. The cut-back condition refers
to the procedure whereby the thrust is reduced after take-off to comply with noise abatement
regulations.

TaABLE 1
pressure
ratio, I_._I_ 5 G, _S_ Q/S
mode Di/ba Y K K M; (Jkg K1)  m? (kg s~ m~?)
cut-back 2.4 1.350 815 650 1.21 1074 0.583 340.0
take-off 3 1.319 1100 843 1.38 1125 0.560 362.4
re-heat 3 1.295 1450 1112 1.39 1158 0.638 319.2

The quantities appearing in table 1 are defined as follows:

py = total jet pressure,

v = ratio of specific heats,

Ty = total jet temperature/K

T; = temperature of fully expanded jet/K,

C, = specific heat at constant pressure/(J kg=! K1),

$ = nozzle exit area/m?

@ = mass flow/(kg s™1).

In the following discussion we shall take the ambient medium to be a standard atmosphere
Yoir = 1.40, T, = 15°C, p, =101300 N/m?.

24 Vol. 289. A.
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(1) The spectrum of the direct scattered sound

Let us now illustrate the spectral distribution of the direct scattered sound predicted by the
model analysis. This is given by the integrand of (8.13) with Z, replaced by the finite shear layer
expression Z; defined in (9.4). The acoustic frequency f = 2/2x will be normalized with respect
to that of the principal peak of the spectrum of the sound scattered in the 6 = 90° direction. From
(8.14) that peak occurs at f = f;, say, where

So=AV/2nfa = V/1.31Dg,, (10.9)

D = 2a being the nozzle exit diameter. In the ¢ direction the peak is displaced to

|4

fl0) = |1—./1{I?:cos¢9| = 1.31Dp,|1 — Mycos 0| (10.10)
This formula exhibits the same functional dependence on D, £, and the eddy convection velocity
V as that predicted by Harper Bourne & Fisher (1973) from their empirical modelling of shock
associated noise. In their formula, however, the numerical coefficient 1.31 is replaced by 1.1.
According to recently published experimental data of Tanna (1977), both formulae underesti-
mate the actual peak frequency (Tanna suggests 0.87 for the value of the numerical coefficient)
although the data tend to confirm the functional dependence of f;,(¢) on V, 8, and 0.

The successive peaks of the predicted spectrum are not equally spaced as they would be for a
harmonic sequence. This is because the nth peak frequency is proportional to the wavenumber
A, /B a of the nth component of the Fourier series expansion (2.14) of the shock cell structure,
where, as before, for a circular jet the A, denote the zeros of Jy(z). In the case of a hot jet only the
first peak can normally be distinguished against the background of the broad-band jet mixing
noise. For a cold jet the second peak is discernible in some radiation directions (Harper Bourne
& Fisher 1973) and occurs at f = 2.3f,(0).

The spectrum of the direct scattered sound is given by the integrand of (8.13) (with Z, replacing
Z,). Experiments usually provide a ‘}-octave’ representation of the acoustic spectrum so that in
order to obtain a comparison with the theory the integrand of (8.13) should be multiplied by the
frequency, f. The product may be represented in the following non-dimensional form

75 = () ()2 (=57 o= (7) w5

AR
* (1 — M, cos 0)4|Jy( By ka+ia (B, ka)?) |2 (10.11)
in which Q= (fIf) W V/Ba),
E=_T{i(1_'MOCOSO) E_(f/fp) Al(lél—(l%cosﬁ) (10.12)

and it is assumed that the eddy convection velocity V' = 0.6U. Itis readily verified from the defini-
tions (8.2), (9.4) that when the frequency f is normalized in the above manner the explicit
dependence of Z,(k, 2 cos0/c,) on the radius a of the nozzle occurs only through the ratio ¢/a
involving the shear-layer width.

Consider first a cold jet in which the static temperature of the fully expanded flow is equal to
that of the atmosphere. Harper Bourne & Fisher (1973) have investigated this case experi-
mentally for g, = \/(M?—1) = 1, (My = ,/2). Figure 4 depicts measured spectra at a distance of
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118 nozzle exit diameters from the nozzle at 0 = 45°, 90° and 135°. To compare these with corres-
ponding spectra predicted by (10.11) we consider the case in which §/e¢ = 0.02, and [/a = 1.7,
where [ is the eddy length scale. This furnishes approximate agreement between theory and
experiment at § = 135°, after which (10.11) determines the absolute spectral levels for all radia-
tion directions. The theoretical spectra are also plotted in figure 4, and exhibit the characteristic
peaks discussed above, the location of the principal peak f;,(0) varying in accordance with (10.10).

110 0=45°

100{ =45 207 £.0)

e
Nl N

e

/\/

=

100
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901 ~20- /\
80- N ~30-
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Ficure 4. Comparison of experimental and theoretical shock associated noise spectra at three different angles 6 to
the jet axis. The shear layer width § and the turbulence length scale [ are adjusted to give an approximate fit
to the experimental data at @ = 135°. [ = 1.7, § = 0.02.

Ficure 5. Illustration of the predicted spectral shapes for a hot jet at the cut-back condition of table 1.

Each of the experimental spectra has a peak located approximately at f = f;,(0), although in the
rear arc (0 = 45°) this principal peak is overshadowed by a broader maximum occurring at
much lower frequencies. This additional strong contribution to the noise spectrum is likely to be
associated with the known dominance of broad-band jet-mixing noise in the rear arc (see, for
example, Tanna 1977%); it is not inconsistent, however, with the field that must arise from the
multiple scattering of the internally scattered wave modes in the manner discussed in §7. Note
also that the second peak of the measured spectrum is just discernible above the background noise
at 0 = 90°, 135°.

When interpreting the theoretical curves it should be borne in mind that in reality the eddy
convection velocity V actually fluctuates randomly about a local mean value (say, for example,
0.6U), and that this variation would manifest itself as a general broadening of the ideal spectral

24~-2
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peaks predicted by equation (10.11). This would tend to fill-in the deep valleys between the
rather sharp peaks of the spectra. In this respect there is good agreement between the theoretical
and experimental spectra at @ = 90°. In the rear arc, at 0 = 45°, the theory greatly overesti-
mates the shock-associated noise peak and exhibits no enhancement at the lower frequencies
which was argued above to correspond to jet mixing noise. The large discrepancy at the peak
radiation frequency may be ascribed to the increased importance of multiple scattering (neg-
lected in the theory) on sound radiated in the downstream direction. This is because waves which
propagate into the rear arc have a relatively short characteristic wavelength and are therefore
more likely to be scattered by the expanding turbulent shear flow through which they must pass.

It is perhaps unwise to accept literally the apparent agreement between theory and experi-
ment because of the unrealistically small shear layer width 8/a required in the comparison.
However, the relative importance of the axial and radial acoustic dipoles discussed at the end of
§8 is presumably correctly modelled by the theory.

In order to illustrate the predicted spectral shape for a hot jet, spectra have been plotted in
figure 5 for the Olympus engine at the ‘cut-back’ condition of table 1 in the case in which
8/a = 0.1 and [/a = 1.5. The general features are similar to those of the cold jet; for each value
of 0 the spectrum has a sharp peak at f = f;,(6). At 0 = 45°, however, the spectral level is greatly
enhanced over a broad band of lower frequencies. This is similar to the experimental behaviour
illustrated in figure 4 for a cold jet, although in the present case it cannot be associated with
mixing noise. A numerical investigation reveals that it is directly attributable to the temperature
difference between the jet and the ambient medium.

(i) Field shape of the direct scattered sound: effect of forward flight

The sound pressure level 42 of the direct scattered field at the observer position (R, 0) is given
by the integral (8.13). Taking account of the effect of finite shear layer width (§9) this becomes

0y _ DBV ny [ DY) Zy(h, Qcos ) J s o) 42
P = et ) - @ (1= Mycos 0)Jy oy a4, B

(10.13)

The integral can be estimated by assuming that the dissipation function 4,(%) is sufficiently
small that
Ji(f1 ka)® § T

TP ka AT 02 (R PaFa =) (10.14)

By substituting into (10.13) and using the formula (10.6) for the dissipation function, it then
follows that
cb( A, )Z (3"_ — M, A, cos 0 )
2(6) = 2aP?B3V3(po/P1) & Bra(l—M,cos0)) “*\p, @’ By a(1 — M, cos 0) (10.15)
nR2U4|1 — M, cos 0] ,2 AZA,, '

where Ay = A4(A,/p1a).

At this stage we can usefully introduce a correction which takes account of the principal effect
of subsonic aircraft flight. To do this we assign to the ambient fluid a velocity, U, say, in the posi-
tive x-direction. A complete analysis of the coherent structure of the jet is much more difficult in
this situation because there now exists a coherent disturbance in the ambient medium. A precise
specification of this disturbance would require a consideration of the diffracting effect of the
nozzle. However, downstream of the nozzle the perturbed, coherent flow in the ambient medium
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would be expected to resemble that of a jet if infinite extent. The bulk of the scattering of the
steady shock cell wave system by the turbulence occurs in the downstream region and we shall
therefore assume that an adequate modification of our formulae due to flight may be obtained by
using that representation of the cell structure which obtains when the presence of the nozzle is
ignored.

The structure of the undamped shock cells is given by the infinite series (2.11) in the absence of an
ambient flow, and depends on the zeros A, of Jy(z). When the ambient medium has velocity U,
the displacement of the boundary of the jet is determined by the non-trivial zeros of a suitably
modified form of the dispersion function (7.1) which defines the possible eigenmodes of a circular
jet. In a reference frame which is fixed relative to the nozzle the wavenumbers £ of stationary distur-
bances on the jet satisfy the following form of (7.1):

Mi\? By Ko(B1]k|a)
Jy(By ka) —sgn (k (—) L0 2 T (B ka) = 0, 10.16
0(181 ) g ( ) MJ ﬂle(ﬁflkla) 1(131 ) ( )
where K, K, are modified Bessel functions (Abramowitz & Stegun 1965, p. 375), M; = Ui/cy < 1
is the flight Mach number and gy = /(1 — M%) > 0.
For small values of M; the roots B, ka = A,, say, of this equation differ by a small amount from
those governing the coherent wave system in the absence of flight. Define

Mi\* 3, Ko(B1An| /1)
nlt = (~) e R ) 10.17

=\ut) BEBIRIR) S
This quantity is always less than about 0.33 for 0 < M; < 0.7. It follows that when £, ka is close to
A, the dispersion equation (10.16) may be approximated by

Jy(Byka+ ,Zrsgn (k) = 0 (10.18)

in which terms of order ,,Z2 have been discarded.

Hence we have in this case A, = A, — ,Zesgn (n). (10.19)

In the same approximation the modified structure of the coherent wave system is given by equa-
tion (2.11) with A, replacing A,.. Since [4,| < |A, | we deduce that the ambient flow increases the
characteristic length of a shock cell and must accordingly diminish the peak spectral frequency fy
of the direct scattered sound. This result may also be incoporated directly into equation (10.15)
for the sound pressure level by replacing A,, by 4, in the summation.

To complete the specification of the effect of flight account must be taken of the Doppler shift
in frequency produced by the ambient flow. This may be done by noting thatin the presence of an
ambient flow equation (8.5) which relates the frequency £ relative to an observer at rest in the
ambient medium to o, that relative to the shear layer, becomes

Q=w+(V-U)K (10.20)
Similarly (8.6) is now k=k=(-1/V){Q—(V-U) K}. (10.21)

The subsequent steps in the analysis of §8 leading to (8.13) are unchanged, and it follows
finally that at a flight Mach number A/; the sound pressure level (10.15) becomes

C aPBPpe) 2 1 A,(1+ My cos 0)
P = i o b o A Aoy Bl (e 1) c657)
4, — M, A, cos0
4 (E?i’ Frai— (M, — %) cos 0])' (10.22)

24-3
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308 M.S. HOWE AND J. E. FFOWCS WILLIAMS
Note that forward flight of the aircraft alters the effective mean shear layer velocity V which is
now increased in a manner which we shall assume to be described approximately by
V= O.G(U-— Uf) + Uf.

Also in (10.21) the polar coordinates (R, 0) refer to the position of the observer relative to the
nozzle at the time of emission of the sound. This is the reference frame that is normally employed in
aerodynamic noise studies.

20 | 20
7

g 20 ] 20 075
= 7 1 1
E" 075 _ J
o | 20 i 20 _
‘5‘ R ] b
a2 0.5
£ 1 50 ] 7
IRAN R 12 |
=1
= | |
2
— 10} | | N 100 ] | _
< 1 h
g
g 7 .
15)
S lo 4 jod - :

T T T T T T T T T T

30 60 90 120 150 180 30 60 90 120 150 180

take-off 0 cut-back ¢
Ficure 6 Ficure 7

Ficure 6. Illustration of the variation with flight Mach number M of the directivity of the direct scattered sound
at the take-ofl condition of table 1 and for //a = 1.5, §/a = 0.1.

Ficure 7. As for figure 6, at the cut-back condition of table 1.

The variation in the field shape of the direct scattered sound predicted by (10.22) is illustrated
in figures 6, 7 for a sequence of flight Mach numbers Af;, and in the particular case in which
8/a = 0.1,1/a = 1.5. The sound pressure level p2(0) is plotted in dB relative to p2(6 = 90°) at zero
flight velocity, both for the take-off (figure 6) and cut-back (figure 7) conditions of the Olympus
engine given in table 1. .

The figures reveal a general rise in the forward arc radiation (6 > 90°) with increasing flight
Mach number. The peak radiation angle reduces from about 75° to 73° as M; increases from zero
to 0.75 at the take-off condition, the corresponding variation is from about 72° to 66° for the
jet at the Concorde cut-back condition. Observe also that the predicted peak level is relatively
insensitive to forward flight variations, and in general the effect of flight is minimal for directions
lying between the peak angle and 6 = 90°.

The field shape predicted at the cut-back condition is particularly interesting. Deneuville
(19776) has developed a prediction scheme for shock associated noise based on a series of model jet
experiments involving a convergent nozzle with an exit diameter of 43 mm. The dotted curve in
figure 8 shows the directivity predicted by Deneuville (Jacques 1977) at a distance of 78 nozzle
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exit diameters for a jet of total temperature 7 = 1100 K operating at a pressure ratio p;/p, = 2.5.
(The prediction procedure is uncertain for  less than the peak radiation angle and a dashed curve
has been plotted in this region). This pressure ratio is close to that of the cut-back condition of
table 1 and, in spite of the relatively large difference in the total temperatures (815 K rather than
1100 K), the corresponding theoretically predicted directivity (figure 7, M; = 0) is not signifi-
cantly different in shape from Deneuville’s curve. This invites comparison of the absolute sound
pressure levels under norminally identical jet conditions.

120

110}

sound pressure level/dB

50 60 90 120 150 180
0
Ficure 8. Comparison of static experimental and theoretical shock associated noise directivities for a jet at

1100 K operating at a pressure ratio of 2.5. ......, experiment (Deneuville 1976, quoted in Jacques 1977) ;
, equation (10.15) with 8/a = 0.22, l/a = 2, V = 0.7U, ({2} = 0.2U.

The full curve of figure 8 represents the absolute field shape predicted by equation (10.21) at
78 nozzle exit diameters for 75 = 1100 K and py/p, = 2.5. The level and shape of the theoretical
curve depend on the values of the shear layer width &, the turbulence length scale /, the eddy
convection velocity ¥ and the root mean square fluctuation velocity (£2)%. In figure 8 we have
taken

= 0.22a
[=2a
V— 07U (10.23)
(g = 0.2U

which provide a reasonable fit to the experimental curve and are not expected to depart sub-
stantially from the representative values for a real jet. In this respect recall that in the theoretical
model the vortex cores lie on the inner interface r = a of the shear layer, so that the effective radial
width of a typical eddy may arguably be taken as 26. We then have /26 = 4.55 which is not
substantially different from the mean spacing-to-width ratio of about 3.5 deduced by Moore &
Saffman (1975) in an analogous situation involving incompressible flow.

No account has been taken in this comparison of the contribution to the sound pressure level
from multiple scattering of the internally scattered wave modes (see §7). This can be significant
provided that the energy of these modes is not substantially diminished by dissipation within the
jet. Itis possible that the free spaceradiation that resultsfrom multiple scattering has essentially the
same directivity as the direct scattered sound, since it is produced by the same physical mechan-
ism, and this would therefore tend to augment the theoretical prediction by raising the directivity
curve by a uniform amount over all angles. A reduction in the value of //a (for example) may be
shown to reduce the absolute level predicted by equation (10.22). Accordingly a somewhat
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310 M.S. HOWE AND ]J. E. FFOWCS WILLIAMS

smaller value of the eddy length scale / would be required to provide a satisfactory comparison
with experiment when the internal modes are included.

We have seen above that forward motion of the aircraft modifies primarily the predicted field
shape in the forward arc (6 > 90°). It is customary to describe the effect of flight by means of a
classical Doppler amplification formula of the form

p2(0) = F/(1 4+ M;cos 0)m. (10.24)
In the present discussion F' = F(l/a,8/a) and the exponent z = n(l/a, /a) would depend on the
characteristic eddy length scale / and shear layer width 8, as well as the total jet temperature and
the pressure ratio. It is hardly likely that such a simple equation can represent forward flight
variations over a considerable range of ¢ and M. In practice, however, it is still useful to have an
indication of the relevant value of the exponent z even for a relatively narrow range of variation of
these parameters.
Equation (10.22) has been used to determine the mean value of z for 90° < 6 < 150° and for
0 < My < 0.5. The computations were undertaken for §/a = 0.1, 0.2 and the results plotted
against //a in figure 9 for the three Olympus jet conditions of table 1. The curves do not determine
n for systematic variations in total jet temperature and pressure ratio, but they indicate that a
smaller Doppler amplification is associated with higher temperatures and pressure ratios.
Doubling the width of the shear layer does not materially alter the value of n except when I/a
is close to unity, and indeed it appears that for 1 <//a < 3, which is probably the practical range
of interest, the variations in the exponent are not particularly significant. The values n = 2.5 and
n = 3.5 may reasonably be said to characterize respectively the take-off/reheat and cut-back
conditions of the Olympus engine.

(iii) The total radiated sound power

Let us now estimate the total radiated sound power associated with the presence of shock cells
in an imperfectly expanded jet. The radiation comprises the direct scattered sound together
with that due to the multiple scattering of the internally scattered random wave modes. Confine
attention to the static case (M; = 0). It has been argued in §7 that the total power flux & into the
random disturbances is given to a good approximation by

na?f? P2V

7 = 20, U% -~

(10.25)
An upper limit to the total sound power may therefore be obtained by assuming that, before their
scattering into free space, the dissipation of the random internal wave modes can be neglected.
Equation (10.25) must then give the flux of energy into the ambient medium.

Recall that this expression for the power has been determined in a reference frame which is
fixed relative to the mean shear layer, and which therefore convects at a velocity I relative to
free space. The calculation of p,(0), the fotal far field acoustic pressure distribution, requires the
consideration of a multiple scattering problem and is not determined by the analysis of this paper.
On the other hand comparison with (8.12) shows that the following relation must hold between

JACONS

7 = 1F50) /poco] (1 - Mycos0) d, (10.26)

where the integration is over the surface of a large sphere of radius R centred on the nozzle exit.
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The effective total power Zy radiated into free space must be calculated in a coordinate system
in which the ambient medium is at rest relative to the observer, and is given by

0 = [ (30 poci) a2. (10.27)

To estimate the value of &} assume that

p3(0) = const (6 > OD),}

10.28
=0 (0<0y), 1029
where 6, is the peak radiation angle discussed in (ii). Equations (10.26), (10.27) then yield

P
[1+M,sin® (36p)]"

Py = (10.29)

This result can be used with the data quoted in table 1 to predict the efficiency of the total
shock associated noise of the Olympus 593 engine. The excess pressure P which appears in
(10.25) may be estimated from the Bernoulli equation if the sonic point of the real jet flow is
assumed to occur at the nozzle exit. The results of such a calculation, expressed as a ratio with the
atmospheric pressure ,, are given in the second column of table 2.

Define the total jet power &; by 25 = thrust x exhaust velocity. Using conditions at the throat
of the nozzle we have in the usual way that

P = 2y = 1) /71 QCy T (10.30)

Recalling that in the theoretical model ma? = §, the nozzle exit area, and that V'~ 0.6U, it
follows from (10.25), (10.29) and (10.30) that the predicted shock noise efficiency is given by

Py 15y(2 P2 9T (r+D)2(y-1) ‘
1 o (<57 o (1031)

Py (1+Mysin®(30,)) (v — 1) My(Q/8)* Co T
By using the data of table 1 and taking 6, = 70° this leads to the predictions of column 3 of
table 2 for the shock noise efficiency of the Olympus engine. A comparison with experiment is
provided by the final column of table 2 which lists the corresponding efficiencies (mixing noise
plus shock associated noise) calculated from the experimental data of Hoch, Duponchel, Cocking
& Bryce (1972), fig. 14).
TABLE 2

percentage acoustic efficiency
Al

' R

€xcess pressure predicted experiment

ratio, (equation (Hoch et al.
mode P/p, (10.31)) 1972)
cut-back 0.29 0.17 0.48
take-off 0.63 1.08 0.93
re-heat 0.64 1.17 0.57

This comparison reveals a remarkable degree of order of magnitude agreement. The prediction
formula (10.31) associates the greatest noise levels with higher total temperatures and pressure
ratios. For the larger values of 75 and py/p, however, the experimental results exhibit a reduc-
tion in the overall efficiency (cf. ‘take-off> and ‘re-heat’), which is related to the corresponding
decrease in the density of the jet (see, for example, Hoch et al. 1972).
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The above assumption that the dissipation within the jet of the internally scattered wave modes
can be ignored, so that all of their energy eventually escapes into free space as sound, may well be
a gross simplification. Static jet measurements (Harper Bourne & Fisher 1973; Tanna 1977) in
the forward arc at @ = 135° indicate that the sound pressure level varies as gf for values of
fy = 4/(M}—1) in the range 0.5— 1. For the same range in /4, it may be shown that the excess
pressure P oc £%, and equations (10.25), (10.29) imply that the predicted sound power £y scales
on f%. This difference could account for the systematic discrepancy between theory and experi-
ment in table 2.

1.0

la P
Ficure Y Froure 10

F1Gure 9. Variation of effective Doppler factor index of equation (10.24) as a function of the turbulence length
scale //a for two values of the shear layer width 6/a. (a) cut-back, (b) take-off, (¢) re-heat condition of table 1.

Ficure 10. Illustration of the variation of the direct scattered sound pressure level at 6 = 135° as a function of
Bi = (ME=1). (a) Ty = 1100 K, (b) T; = 813 K;8/a = 0.2, l/a = 2.

In the extreme case in which the contribution from the internally scattered modes is neglected
(or in which the total radiation is characterized by essentially the same law as that of the direct
scattered sound, as implied in the discussion of figure 8), equation (10.22) may be used (with
M; = 0) to examine the dependence of the direct scattered sound on f,. Figure 10 illustrates the
corresponding variation of p2(6) as a function of 8, at § = 135° for §/a = 0.2, [ Ja=2V=06U
and for two values 75 = 1100 K, 815 K of the total jet temperature (cf table 1). We have argued
in (ii) that these values of the model jet parameters are possibly representative of the real jet, and
indeed the plots in figure 10 reveal a tolerable level of argreement with the observed 8% law.
Increasing/decreasing the width & of the shear layer, however, tends to decrease/increase the
effective exponent of the predicted power law dependence on f,.

11. SUMMARY OF PRINCIPAL GONCLUSIONS

In this paper we have examined in detail a theoretical model of the interaction between turbu-
lent velocity fluctuations and the shock cell system of an imperfectly expanded jet. The jet is of
arbitrary temperature, but no account has been taken of the temperature inhomogeneities which
would then be present in the flow and also participate in the interaction. This is not expected to
modify significantly the principal conclusions, which have been shown to depend only marginally
on the details of the scattering mechanism, provided the interaction is weak.
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It has been deduced from the theoretical model that:

(1) the scattered field consists of two essentially distinct components: (i) the direct scattered
sound, which in the literature has hitherto been referred to as #4e shock associated noise; (ii) the
internally scattered disturbances, which are probably primarily responsible for the decay of the
shock cell system, and which give rise to a broad band spectrum of free space radiation.

(2) The directivity of the direct scattered sound (i) is essentially uniform over a wide range of
angles in the forward arc, the peak radiation angle being at about 70° to the jet axis. Forward
flight of the aircraft raises the forward arc radiation levels, corresponding to a Doppler amplifica-
tion exponent of approximately 2.5 for the Concorde supersonic transport at the take-off /re-heat
conditions, and 3.5 at cut-back, but hardly affects the radiation for angles between 90° and the
peak radiation direction.

(3) The total sound power associated with the presence of shock cells has a predicted efficiency
ranging between 0.2-1.2 %, for the engine of a supersonic transport at typical take-off conditions,
in good agreement with experiment.

This work is performed as part of the Rolls-Royce research programme on high-speed jet noise
and the company’s sponsorship is gratefully acknowledged. The authors are indebted to Dr J. R.
Jacques of SNECMA Noise Department for the provision of data used in § 10, and also to Mrs Judy
Broadway who undertook the graph plotting and numerical computations.
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